Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T05:21:33.916Z Has data issue: false hasContentIssue false

Tidal dwarf galaxies as laboratories of star formation and cosmology

Published online by Cambridge University Press:  01 August 2006

Pierre-Alain Duc
Affiliation:
AIM – Unité Mixte de Recherche CEA – CNRS – Université Paris VII – UMR n° 7158 Service d'Astrophysique, CEA–Saclay, 91191 Gif-sur-Yvette, France email: paduc@cea.fr
Frédéric Bournaud
Affiliation:
AIM – Unité Mixte de Recherche CEA – CNRS – Université Paris VII – UMR n° 7158 Service d'Astrophysique, CEA–Saclay, 91191 Gif-sur-Yvette, France email: paduc@cea.fr
Médéric Boquien
Affiliation:
AIM – Unité Mixte de Recherche CEA – CNRS – Université Paris VII – UMR n° 7158 Service d'Astrophysique, CEA–Saclay, 91191 Gif-sur-Yvette, France email: paduc@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation may take place in a variety of locations in interacting systems: in the dense core of mergers, in the shock regions at the interface of the colliding galaxies and even within the tidal debris expelled into the intergalactic medium. Along tidal tails, objects may be formed with masses ranging from those of super-star clusters to dwarf galaxies: the so-called Tidal Dwarf Galaxies (TDGs). Based on a set of multi-wavelength observations and extensive numerical simulations, we show how TDGs may simultaneously be used as laboratories to study the process of star-formation (SFE, IMF) in a specific environment and as probes of various cosmological properties, such as the distribution of dark matter and satellites around galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Appleton, P. N. et al. 2006, ApJ 639, L51CrossRefGoogle Scholar
Barnes, J. E. & Hernquist, L. 1992, Nature 360, 715Google Scholar
Barnes, J. E. 2004, MNRAS 350, 798Google Scholar
Bournaud, F., Duc, P.-A. & Masset, F. 2003, A&A 411, L469Google Scholar
Bournaud, F. & Duc, P.-A. 2006, A&A 456, 481Google Scholar
Braine, J., Duc, P.-A., Lisenfeld, U. et al. 2001, A&A 378, 51Google Scholar
Cortese, L., Gavazzi, G., Boselli, A. et al. 2006, A&A 453, 847Google Scholar
de, Grijs R., Lee, J. T., Clemencia, Mora Herrera M. et al. 2003, New Astronomy 8, 155Google Scholar
Duc, P.-A., Bournaud, F. & Masset, F. 2004, A&A 427, 803Google Scholar
Elmegreen, B. G., Kaufman, M. & Thomasson, M. 1993, ApJ 412, 90Google Scholar
Gallagher, S. C., Charlton, J. C., Hunsberger, S. D., Zaritsky, D. & Whitmore, B. C. 2001, AJ 122, 163Google Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ 606, 271Google Scholar
Gerhard, O., Arnaboldi, M., Freeman, K. C. & Okamura, S. 2002, ApJ 580, L121Google Scholar
Kroupa, P. 1997, New Astronomy 2, 139CrossRefGoogle Scholar
Lisenfeld, U., Braine, J., Duc, P-A.., Brinks, E., Charmandaris, V. & Leon, S. 2004, A&A 426, 471Google Scholar
López-Sánchez, Á. R.Esteban, C. & Rodríguez, M. 2004, ApJS 153, 243Google Scholar
Mendes, de Oliveira C., Cypriano, E. S., Sodré, L. & Balkowski, C. 2004, ApJ 605, L17Google Scholar
Mirabel, I. F., Dottori, H. & Lutz, D. 1992, A&A 256, L19Google Scholar
Ryan-Weber, E. V.Meurer, G. R., Freeman, K. C. et al. 2004, AJ 127, 1431Google Scholar
Schweizer, F., Miller, B. W. & Whitmore, B. C. & Fall, S. M. 1996, AJ 112, 1839CrossRefGoogle Scholar
Weilbacher, P. M., Duc, P.-A. & Fritze-v, Alvensleben U. 2003, A&A 397, 545Google Scholar
Wetzstein, M., Naab, T. & Burkert, A. 2006, astro-ph/0510821Google Scholar
Yang, X., van den Bosch, F. C., Mo, H. J. et al. 2006, MNRAS 528Google Scholar