Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T22:48:16.206Z Has data issue: false hasContentIssue false

Tidal effects on stellar activity

Published online by Cambridge University Press:  12 September 2017

K. Poppenhaeger*
Affiliation:
Astrophysics Research Centre, Queen's University Belfast, BT7 1NN Belfast, United Kingdom email: k.poppenhaeger@qub.ac.uk Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, 02138 MA, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. I will review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Anglada-Escudé, G., Amado, P. J., Barnes, J., et al., 2016, Nature, 536, 437 Google Scholar
Barnes, S. A., 2003, ApJ, 586, 464 Google Scholar
Barnes, S. A., 2010, ApJ, 722, 222 CrossRefGoogle Scholar
Bastien, F. A., Stassun, K. G., Pepper, J., et al., 2014, AJ, 147, 29 Google Scholar
Bourrier, V., Lecavelier des Etangs, A., Dupuy, H., et al., 2013, A&A, 551, A63 Google Scholar
Browning, M. K., 2008, ApJ, 676, 1262 Google Scholar
Chapront, J., Chapront-Touzé, M., & Francou, G., 2002, A&A, 387, 700 Google Scholar
Cohen, O., Drake, J. J., Kashyap, V. L., et al., 2009, ApJL, 704, L85 Google Scholar
Cuntz, M., Saar, S. H., & Musielak, Z. E., 2000, ApJL, 533, L151 Google Scholar
Davenport, J. R. A., Kipping, D. M., Sasselov, D., Matthews, J. M., & Cameron, C., 2016, ApJL, 829, L31 CrossRefGoogle Scholar
Ehrenreich, D., Bourrier, V., Wheatley, P. J., et al., 2015, Nature, 522, 459 Google Scholar
Getman, K. V., Broos, P. S., Kóspál, Á., Salter, D. M., & Garmire, G. P., 2016, AJ, 152, 188 Google Scholar
Getman, K. V., Broos, P. S., Salter, D. M., Garmire, G. P., & Hogerheijde, M. R., 2011, ApJ, 730, 6 CrossRefGoogle Scholar
Güdel, M., Audard, M., Reale, F., Skinner, S. L., & Linsky, J. L., 2004, A&A, 416, 713 Google Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L., 1997, ApJ, 483, 947 Google Scholar
Irwin, J., Berta, Z. K., Burke, C. J., et al., 2011, ApJ, 727, 56 Google Scholar
Jackson, B., Miller, N., Barnes, R., et al., 2010, MNRAS, 407, 910 CrossRefGoogle Scholar
Kashyap, V. L., Drake, J. J., & Saar, S. H., 2008, ApJ, 687, 1339 Google Scholar
Kulow, J. R., France, K., Linsky, J., & Loyd, R. O. P., 2014, ApJ, 786, 132 Google Scholar
Lanza, A. F., 2008, A&A, 487, 1163 Google Scholar
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., et al., 2010, A&A, 514, A72 Google Scholar
Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C., & Hébrard, G., 2004, A&A, 418, L1 Google Scholar
Lopez, E. D. & Fortney, J. J., 2013, ApJ, 776, 2 CrossRefGoogle Scholar
Maggio, A., Pillitteri, I., Scandariato, G., et al., 2015, ApJL, 811, L2 Google Scholar
Mamajek, E. E. & Hillenbrand, L. A., 2008, ApJ, 687, 1264 Google Scholar
Mathis, S. & Le Poncin-Lafitte, C., 2009, A&A, 497, 889 Google Scholar
Meibom, S., Barnes, S. A., Platais, I., et al., 2015, Nature, 517, 589 Google Scholar
Meibom, S., Mathieu, R. D., & Stassun, K. G., 2007, ApJL, 665, L155 Google Scholar
Miller, B. P., Gallo, E., Wright, J. T., & Dupree, A. K., 2012, ApJ, 754, 137 Google Scholar
Miller, B. P., Gallo, E., Wright, J. T., & Pearson, E. G., 2015, ApJ, 799, 163 Google Scholar
Morgan, D. P., West, A. A., & Becker, A. C., 2016, AJ, 151, 114 Google Scholar
Morgan, D. P., West, A. A., Garcés, A., et al., 2012, AJ, 144, 93 Google Scholar
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H., 1984, ApJ, 279, 763 Google Scholar
Ogilvie, G. I. & Lin, D. N. C., 2007, ApJ, 661, 1180 Google Scholar
Parker, E. N., 1955, ApJ, 122, 293 Google Scholar
Penev, K., Jackson, B., Spada, F., & Thom, N., 2012, ApJ, 751, 96 Google Scholar
Penev, K. & Sasselov, D., 2011, ApJ, 731, 67 Google Scholar
Peterson, W. M., Mutel, R. L., Güdel, M., & Goss, W. M., 2010, Nature, 463, 207 Google Scholar
Pillitteri, I., Günther, H. M., Wolk, S. J., Kashyap, V. L., & Cohen, O. 2011, ApJL, 741, L18+Google Scholar
Pillitteri, I., Wolk, S. J., Lopez-Santiago, J., et al. 2014a, ApJ, 785, 145+Google Scholar
Pillitteri, I., Wolk, S. J., Sciortino, S., & Antoci, V. 2014b, A&A, 567, A128 Google Scholar
Poppenhaeger, K., Czesla, S., Schröter, S., et al., 2012, A&A, 541, A26 Google Scholar
Poppenhaeger, K., Lenz, L. F., Reiners, A., Schmitt, J. H. M. M., & Shkolnik, E. 2011, A&A, 528, A58+Google Scholar
Poppenhaeger, K., Robrade, J., & Schmitt, J. H. M. M. 2010, A&A, 515, A98+Google Scholar
Poppenhaeger, K. & Schmitt, J. H. M. M., 2011, ApJ, 735, 59 Google Scholar
Poppenhaeger, K., Schmitt, J. H. M. M., & Wolk, S. J., 2013, ApJ, 773, 62 Google Scholar
Poppenhaeger, K. & Wolk, S. J., 2014, A&A, 565, L1 Google Scholar
Poppenhäger, K., Robrade, J., Schmitt, J. H. M. M., & Hall, J. C., 2009, A&A, 508, 1417 Google Scholar
Preibisch, T. & Feigelson, E. D., 2005, ApJS, 160, 390 Google Scholar
Reiners, A., Joshi, N., & Goldman, B., 2012, AJ, 143, 93 Google Scholar
Robrade, J., Poppenhaeger, K., & Schmitt, J. H. M. M., 2010, A&A, 513, A12 Google Scholar
Sanz-Forcada, J., Ribas, I., Micela, G., et al., 2010, A&A, 511, L8 Google Scholar
Schatzman, E., 1962, Annales d’Astrophysique, 25, 18 Google Scholar
Schrijver, C. J. & Zwaan, C., 1991, A&A, 251, 183 Google Scholar
Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J., & Hawley, S., 2010, Astrobiology, 10, 751 Google Scholar
Shkolnik, E., Bohlender, D. A., Walker, G. A. H., & Collier Cameron, A., 2008, ApJ, 676, 628 CrossRefGoogle Scholar
Shkolnik, E., Walker, G. A. H., Bohlender, D. A., Gu, P., & Kürster, M., 2005, ApJ, 622, 1075 Google Scholar
Siarkowski, M., Pres, P., Drake, S. A., White, N. E., & Singh, K. P., 1996, ApJ, 473, 470 Google Scholar
Skumanich, A., 1972, ApJ, 171, 565 Google Scholar
Soderblom, D. R., 2010, Ann. Rev. Astron. Ast., 48, 581 CrossRefGoogle Scholar
Stelzer, B., Damasso, M., Scholz, A., & Matt, S. P., 2016, MNRAS, 463, 1844 Google Scholar
Stepien, K., 1995, MNRAS, 274, 1019 Google Scholar
Telleschi, A., Güdel, M., Briggs, K., et al., 2005, ApJ, 622, 653 CrossRefGoogle Scholar
van Saders, J. L., Ceillier, T., Metcalfe, T. S., et al., 2016, Nature, 529, 181 Google Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J., et al., 2003, Nature, 422, 143 Google Scholar
Yadav, R. K., Christensen, U. R., Morin, J., et al., 2015, ApJL, 813, L31 Google Scholar
Zahn, J.-P. 2008, in EAS Publications Series, Vol. 29, EAS Publications Series, ed. Goupil, M.-J. & Zahn, J.-P., 6790 Google Scholar