Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:33:46.294Z Has data issue: false hasContentIssue false

Time resolved star formation in the SMC: the youngest star clusters

Published online by Cambridge University Press:  01 July 2008

Elena Sabbi
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: sabbi@stsci.edu
Linda J. Smith
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: sabbi@stsci.edu University College London, London, UK
Lynn R. Carlson
Affiliation:
Johns Hopkins University, Baltimore, MD, USA
Antonella Nota
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: sabbi@stsci.edu European Space Agency, Research and Scientific Support Department, Baltimore, MD, USA
Monica Tosi
Affiliation:
INAF-Osservatorio Astronomico di Bologna, Bologna, Italy
Michele Cignoni
Affiliation:
INAF-Osservatorio Astronomico di Bologna, Bologna, Italy
Jay S. Gallagher III
Affiliation:
University of Wisconsin, Madison, WI, USA
Marco Sirianni
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: sabbi@stsci.edu European Space Agency, Research and Scientific Support Department, Baltimore, MD, USA
Margaret Meixner
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: sabbi@stsci.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The two young clusters NGC 346 and NGC 602 in the Small Magellanic Cloud provide us with the opportunity to study and the efficiency of feedback mechanism at low metallicity, as well as the impact of local and global conditions in cluster formation and evolution. I describe the latest results from a multi-wavelength, large-scale study of these two clusters. HST/ACS images reveal that the clusters have very different structures: NGC 346 is composed by a number of sub-clusters which appear coeval with ages of 3 ± 1 Myr, strongly suggesting formation by the hierarchical fragmentation of a turbulent molecular cloud (Nota et al. 2006; Sabbi et al. 2007a). NGC 602, on the contrary, appears as a single small cluster of OB stars surrounded by pre-main sequence stars. For both clusters high-resolution spectroscopy of the ionized gas shows little evidence for gas motions. This suggests that at the low SMC metallicity, the winds from the hottest stars are not powerful enough to sweep away the residual gas. Instead we find that stellar radiation is the dominant process shaping the interstellar environment of NGC 346 and NGC 602.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abel, T., Wise, J. H., & Bryan, G. L. 2007, ApJ, 659, L87CrossRefGoogle Scholar
Bastian, N. & Goodwin, S. P. 2006, MNRAS, 369, L6CrossRefGoogle Scholar
Bonnell, I. A. & Bate, M. R. 2002, MNRAS, 336, 659CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., & Vine, S. 2003, MNRAS, 343, 413CrossRefGoogle Scholar
Bouret, J.-C., Lanz, T., Hillier, D. J., Heap, S. R., Hubeny, I., Lennon, D. J., Smith, L. J., & Evans, C. J. 2003, ApJ, 595, 1182CrossRefGoogle Scholar
Carlson, L. R., Sabbi, E., Sirianni, M., et al. 2007, ApJ, 665, L109CrossRefGoogle Scholar
Cignoni, M., Sabbi, E., Nota, A., et al. 2009, AJ, in pressGoogle Scholar
Contursi, A., Lequeux, J., Cesarsky, D., et al. 2000, A&A, 362, 310Google Scholar
Elmegreen, B. G. 2000, AJ, 530, 227Google Scholar
Klessen, R. S. & Burkert, A. 2000, ApJS, 128, 287CrossRefGoogle Scholar
Massey, P., Parker, J. W., & Garmany, C. D. 1989, AJ, 98, 1305CrossRefGoogle Scholar
Nazé, Y., Hartwell, J. M., Stevens, I. R., Corcoran, M. F., Chu, Y.-H., Koenigsberger, G., Moffat, A. F. J., & Niemela, V. S. 2002, ApJ, 580, 225CrossRefGoogle Scholar
Nigra, L., Gallagher, J. S. III, Smith, L. J., Stanimirović, S., Nota, A. & Sabbi, E. 2008, PASP, 120, 972CrossRefGoogle Scholar
Nota, A., Sirianni, M., Sabbi, E., et al. 2006, ApJ, 640, L29CrossRefGoogle Scholar
Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980CrossRefGoogle Scholar
Rubio, M., Contursi, A., Lequeux, J., Probst, R., Barbá, R., Boulanger, F., Cesarsky, D., & Maoli, R. 2000, A&A, 359, 1139Google Scholar
Sabbi, E., Sirianni, M., Nota, A., et al. 2007a, AJ, 133, 44CrossRefGoogle Scholar
Sabbi, E., Sirianni, M., Nota, A., Gallagher, J., Tosi, M., Smith, L. J., Angeretti, L., & Meixner, M. 2007b, AJ, 133, 44CrossRefGoogle Scholar
Simon, J. D., Bolatto, A. D., Whitney, B. A., et al. 2007, ApJ, 670, 313CrossRefGoogle Scholar
Stanimirović, S., Staveley-Smith, L., Dickey, J. M., Sault, R. J., & Snowden, S. L. 1999, MNRAS, 302, 417CrossRefGoogle Scholar
Staveley-Smith, L., Sault, R. J., Hatzidimitriou, D., Kesteven, M. J., & McConnell, D. 1997, MNRAS, 289, 225CrossRefGoogle Scholar