Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T11:36:23.816Z Has data issue: false hasContentIssue false

Time-Domain Instrumentation at ESO

Published online by Cambridge University Press:  29 August 2019

V. D. Ivanov*
Affiliation:
European Southern Observatory, Garching, Germany email: vivanov@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the years the European Southern Observatory (ESO) has offered a number of time-domain instruments that enable the user to achieve time resolution as small as milliseconds. They have been used for a wide range of applications, from binary studies with Lunar occultations, characterisation of X-ray binaries and exoplanet transits, to quasar variability. Furthermore, ESO provides a target-of-opportunity (ToO) rapid-response-mode (RRM) channel to trigger quick follow-up observations within as little delay as minutes after a transient has been detected. This talk reviewed the available time-domain observing modes and instruments at ESO, giving priority to FORS2, HAWKI and UltraCam. It described the ToO and RRM, and gave examples of the most common science cases that take advantage of those channels and capabilities.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Sci, 340, 448Google Scholar
Appenzeller, I., Fricke, K.; Fürtig, W., et al. 1998, ESO Messenger, 94, 1Google Scholar
Berard, D., Sicardy, B.; Camargo, J. I. B., et al. 2017 AJ, 154, 14410.3847/1538-3881/aa830dCrossRefGoogle Scholar
Cáceres, , Ivanov, V. D., Minniti, D., et al. 2009, A&A, 507, 481Google Scholar
Cáceres, I. V. D., Minniti, D., et al. 2011, A&A, 530, 5Google Scholar
Cáceres, C., Kabath, P., Hoyer, S., et al. 2014, A&A, 565, 7Google Scholar
Dhillon, V. S., Marsh, T. R., Stevenson, M. J., et al. 2007, MNRAS, 378, 82510.1111/j.1365-2966.2007.11881.xCrossRefGoogle Scholar
Dhillon, V. S., Marsh, T. R., Bezawada, N., et al. 2016, Proc. SPIE, 9908, 0Google Scholar
Dias-Oliveira, A., Sicardy, B., Lellouch, E., et al. 2015, ApJ, 811, 5310.1088/0004-637X/811/1/53CrossRefGoogle Scholar
Graur, O., Rodney, S. A., Maoz, D., et al. 2014, ApJ, 738, 281Google Scholar
Hallakoun, N., Xu, S., Maoz, D., et al. 2014, MNRAS, 469, 321310.1093/mnras/stx924CrossRefGoogle Scholar
Hynes, R. I., O’Brien, K., Mullally, F., & Ashcraft, T. 2009, MNRAS, 399, 28110.1111/j.1365-2966.2009.15260.xCrossRefGoogle Scholar
Ivanov, V. D., Cioni, M. R. L., Bekki, K., et al. 2016, A&A, 588, 93Google Scholar
Lenzen, R., Hartung, M., Brandner, W., et al. 2003, Proc. SPIE, 4841, 94410.1117/12.460044CrossRefGoogle Scholar
Marsh, T. R., Parsons, S. G., Bours, M. C. P., et al. 2014, MNRAS, 437, 47510.1093/mnras/stt1903CrossRefGoogle Scholar
Moorwood, A., Cuby, J.-G., Biereichel, P., et al. 1998a, ESO Messenger, 94, 7Google Scholar
Moorwood, A., Cuby, J.-G., & Lidman, C. 1998b, ESO Messenger, 91, 9Google Scholar
Maxted, P. F. L., Serenelli, A. M., Miglio, A., et al. 2013, Nature, 498, 46310.1038/nature12192CrossRefGoogle Scholar
Pirard, J.-F., Kissler-Patig, M., Moorwood, A., et al. 2004, Proc. SPIE, 5492, 176310.1117/12.578293CrossRefGoogle Scholar
Plewa, P. M., Gillessen, S., Pfuhl, O., et al. 2017, ApJ, 840, 5010.3847/1538-4357/aa6e00CrossRefGoogle Scholar
Richichi, A., Fors, O., Cusano, F., & Ivanov, V. D. 2014, A&A, 147, 57Google Scholar