No CrossRef data available.
Article contents
Towards Realistic Understandings of Gas Dynamics in Protoplanetary Disks
Published online by Cambridge University Press: 13 January 2020
Abstract
The gas dynamics of protoplanetary disks (PPDs) plays a crucial role in almost all stages of planet formation, yet it is far from being well understood largely due to the complex interplay among various microphysical processes. Primarily, PPD gas dynamics is likely governed by magnetic fields, and their coupling with the weakly ionized gas is described by non-ideal magnetohydrodynamic (MHD) effects. Incorporating these effects, I will present the first fully global simulations of PPDs that include the most realistic disk microphysics. Accretion and disk evolution is primarily driven by magnetized disk winds with significant mass loss comparable to accretion rate. The overall disk gas dynamics strongly depends on the polarity of large-scale poloidal magnetic field threading the disk owing to the Hall effect. The flow structure in the disk is highly unconventional with major implications on planet formation.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 14 , Symposium S345: Origins: From the Protosun to the First Steps of Life , August 2018 , pp. 102 - 105
- Copyright
- © International Astronomical Union 2020