Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T19:30:57.704Z Has data issue: false hasContentIssue false

Ultraluminous Extragalactic Chemistry

Published online by Cambridge University Press:  04 September 2018

Sergio Martín Ruiz*
Affiliation:
European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19, Chile Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19, Chile email: smartin@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At a distance of 77 Mpc, the Ultralumious galaxy Arp 220 is the closest extragalactic equivalent to Galactic hot cores. The low resolution SMA survey showed a highly excited confusion limited spectrum. The new ALMA snapshot spectral scan opens the possibility of chemically resolve the two nuclei at unprecedented sensitivity. When completed, it will be the widest survey ever done towards an extragalactic object. The model of Band 6 and 7 data already shows the chemical similarities between the interacting nuclei which may provide clues on the similar heating sources. Vibrationally excited transitions may be tracing the deeply embedded dust obscured active nuclei and/or hot compact star burst. This vibrational emission is the brightest ever measured in an extragalactic object, and even so compared with Galactic hot cores. In fact, the eastern one is the brightest in such vibrational emission. Water mega-maser emission also points towards a very compact sources likely related to star forming clumps within both Arp 220 nuclei.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aalto, S., Garcia-Burillo, S., Muller, S., et al. 2015a, A&A, 574, A85Google Scholar
Aalto, S., Martín, S., Costagliola, F., et al. 2015b, A&A, 584, A42Google Scholar
Aladro, R., Martín, S., Martín-Pintado, J., et al. 2011, A&A, 535, A84Google Scholar
Aladro, R., Martín, S., Riquelme, D., et al. 2015, A&A, 579, A101Google Scholar
Barcos-Muñoz, L., Leroy, A. K., Evans, A. S., et al. 2015, ApJ, 799, 10Google Scholar
Cernicharo, J., Pardo, J. R., & Weiss, A., 2006, ApJ, 646, L49Google Scholar
Clements, D. L., McDowell, J. C., Shaked, S., et al. 2002, ApJ, 581, 974Google Scholar
Costagliola, F. & Aalto, S., 2010, A&A, 515, A71Google Scholar
Costagliola, F., Sakamoto, K., Muller, S., et al. 2015, A&A, 582, A91Google Scholar
Davis, T. A., Heiderman, A., Evans, N. J., & Iono, D. 2013, MNRASGoogle Scholar
Greve, T. R., Papadopoulos, P. P., Gao, Y., & Radford, S. J. E., 2009, ApJ, 692, 1432Google Scholar
Imanishi, M. & Nakanishi, K., 2013, AJ, 146, 91Google Scholar
Imanishi, M. & Nakanishi, K., 2014, AJ, 148, 9Google Scholar
Imanishi, M., Nakanishi, K., & Izumi, T., 2016, ApJ, 825, 44Google Scholar
König, S., Martín, S., Muller, S., et al. 2017, A&A, 602, A42Google Scholar
Lonsdale, C. J., Diamond, P. J., Thrall, H., Smith, H. E., & Lonsdale, C. J., 2006, ApJ, 647, 185Google Scholar
Madau, P. & Dickinson, M., 2014, ARAA, 52, 415Google Scholar
Martín, S. 2011, in: Cernicharo, J. & Bachiller, R. (eds.), The Molecular Universe, Proc. IAU Symposium No 280 p. 351Google Scholar
Martín, S., Aalto, S., Sakamoto, K., et al. 2016, A&A, 590, A25Google Scholar
Martín, S., Kohno, K., Izumi, T., et al. 2015, A&A, 573, A116Google Scholar
Martín, S., Krips, M., Martín-Pintado, J., et al. 2011, A&A, 527, A36Google Scholar
McDowell, J. C., Clements, D. L., Lamb, S. A., et al. 2003, ApJ, 591, 154Google Scholar
Meier, D. S., Walter, F., Bolatto, A. D., et al. 2015, ApJ, 801, 63Google Scholar
Muller, S., Black, J. H., Guélin, M., et al. 2014a, A&A, 566, L6Google Scholar
Muller, S., Combes, F., Guélin, M., et al. 2014b, A&A, 566, A112Google Scholar
Muller, S., Müller, H. S. P., Black, J. H., et al. 2016, A&A, 595, A128Google Scholar
Nakajima, T., Takano, S., Kohno, K., et al. 2015, PASJ, 67, 8Google Scholar
Parra, R., Conway, J. E., Diamond, P. J., et al. 2007, ApJ, 659, 314Google Scholar
Rangwala, N., Maloney, P. R., Wilson, C. D., et al. 2015, ApJ, 806, 17Google Scholar
Sakamoto, K., Aalto, S., Evans, A. S., Wiedner, M. C., & Wilner, D. J., 2010, ApJ, 725, L228Google Scholar
Sakamoto, K., Scoville, N. Z., Yun, M. S., et al. 1999, ApJ, 514, 68Google Scholar
Salter, C. J., Ghosh, T., Catinella, B., et al. 2008, AJ, 136, 389Google Scholar
Scoville, N., Murchikova, L., Walter, F., et al. 2017, ApJ, 836, 66Google Scholar
Scoville, N., Sheth, K., Walter, F., et al. 2015, ApJ, 800, 70Google Scholar
Teng, S. H., Veilleux, S., Anabuki, N., et al. 2009, ApJ, 691, 261Google Scholar
Tosaki, T., Kohno, K., Harada, N., et al. 2017, PASJ, 69, 18Google Scholar
Watanabe, Y., Sakai, N., Sorai, K., Ueda, J., & Yamamoto, S., 2016, ApJ, 819, 144Google Scholar
Watanabe, Y., Sakai, N., Sorai, K., & Yamamoto, S., 2014, ApJ, 788, 4Google Scholar
Zschaechner, L. K., Ott, J., Walter, F., et al. 2016, ApJ, 833, 41Google Scholar