Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T13:52:28.975Z Has data issue: false hasContentIssue false

Understanding galaxy formation in the reionization era using the FIRE simulations

Published online by Cambridge University Press:  04 June 2020

Xiangcheng Ma*
Affiliation:
Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA94720, USA email: xchma@berkeley.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a suite of high-resolution cosmological zoom-in simulations of galaxies at z⩾ 5using the state-of-the-art models for the multi-phase ISM, star formation, and stellar feedback from the FIRE project. We present a series of key results from these simulations, including the stellar mass–halo mass relation, the ultraviolet luminosity functions, dust attenuation and dust temperatures, the ubiquitous formation of bound star clusters, morphology and clumpiness, and the escape fractions of ionizing photons from high-redshift galaxies. We discuss how different simulations in the literature agree and disagree and what observations are most useful for testing the models in the era of ALMA and JWST.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baes, M., Verstappen, J., De Looze, I., et al. 2011, ApJS, 196, 2210.1088/0067-0049/196/2/22CrossRefGoogle Scholar
Behroozi, P. S. & Silk, J., 2015, ApJ, 799, 32CrossRefGoogle Scholar
Casey, C. M., Zavala, J. A., Spilker, J., et al. 2018, ApJ, 862, 77CrossRefGoogle Scholar
Ceverino, D., Glover, S. C. O., & Klessen, R. S., 2017, MNRAS, 470, 2791CrossRefGoogle Scholar
Feng, Y., Di-Matteo, T., Croft, R. A., et al. 2016, MNRAS, 455, 2778CrossRefGoogle Scholar
Hopkins, P. F., Wetzel, A., Kereš, D., et al. 2018, MNRAS, 480, 800CrossRefGoogle Scholar
Katz, H., Kimm, T., Haehnelt, M. G., et al. 2019, MNRAS, 483, 2019Google Scholar
Ma, X., Kasen, D., Hopkins, P. F., et al. 2015, MNRAS, 453, 960CrossRefGoogle Scholar
Ma, X., Hopkins, P. F., Kasen, D., et al. 2016, MNRAS, 459, 3614CrossRefGoogle Scholar
Ma, X., Hopkins, P. F., Garrison-Kimmel, S., et al. 2018a, MNRAS, 478, 1694CrossRefGoogle Scholar
Ma, X., Hopkins, P. F., Boylan-Kolchin, M., et al. 2018b, MNRAS, 477, 219CrossRefGoogle Scholar
Ma, X., Hayward, C. C., Casey, C. M., et al. 2019a, MNRAS, 487, 184410.1093/mnras/stz1324CrossRefGoogle Scholar
Ma, X., Grudić, M. Y., Quataert, E., et al. 2019b, arXiv e-print: 1906.11261Google Scholar
Pallottini, A., Ferrara, A., Gallerani, S., et al. 2017, MNRAS, 465, 2540CrossRefGoogle Scholar
Robertson, B. E., Furlanetto, S. R., Schneider, E., et al. 2013, ApJ, 768, 71CrossRefGoogle Scholar
Stefanon, M., Bouwens, R. J., Labbé, I., et al. 2017, ApJ, 843, 3610.3847/1538-4357/aa72d8CrossRefGoogle Scholar
Tacchella, S., Bose, S., Conroy, C., et al. 2018, ApJ, 868, 9210.3847/1538-4357/aae8e0CrossRefGoogle Scholar
Wilkins, S. M., Feng, Y., Di Matteo, T., et al. 2017, MNRAS, 469, 2517CrossRefGoogle Scholar
Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., et al. 2019, MNRAS, 483, 2983CrossRefGoogle Scholar