Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T04:12:16.564Z Has data issue: false hasContentIssue false

Universal void density profiles from simulation and SDSS

Published online by Cambridge University Press:  12 October 2016

S. Nadathur
Affiliation:
Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014, University of Helsinki, Finland
S. Hotchkiss
Affiliation:
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK
J. M. Diego
Affiliation:
IFCA, Instituto de Fisica de Cantabria (UC-CSIC), Avda Los Castros s/n. E-39005 Santander, Spain
I. T. Iliev
Affiliation:
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK
S. Gottlöber
Affiliation:
Leibniz-Institute for Astrophysics, An der Sternwarte 16, D-14482 Potsdam, Germany
W. A. Watson
Affiliation:
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK
G. Yepes
Affiliation:
Departamento de Física Teórica, Modulo C-XI, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or – within the range of the simulated catalogue – on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Blanton, M. R. et al., 2005, AJ, 129, 2562 CrossRefGoogle Scholar
Cai, Y.-C., Neyrinck, M. C., Szapudi, I., Cole, S., & Frenk, C. S., 2013, ArXiv e-prints, 1301.6136Google Scholar
Ceccarelli, L., Paz, D., Lares, M., Padilla, N., & Lambas, D. G., 2013, MNRAS, 434, 1435 Google Scholar
Clampitt, J., Cai, Y.-C., & Li, B., 2013, MNRAS, 431, 749 Google Scholar
Clampitt, J. & Jain, B., 2014, ArXiv e-prints, arXiv:1404.1834Google Scholar
Colberg, J. M., Sheth, R. K., Diaferio, A., Gao, L., & Yoshida, N., 2005, MNRAS, 360, 216 CrossRefGoogle Scholar
Flender, S., Hotchkiss, S., & Nadathur, S., 2013, JCAP, 1302, 013 Google Scholar
Granett, B. R., Neyrinck, M. C., & Szapudi, I., 2008, ApJ, 683, L99 CrossRefGoogle Scholar
Hamaus, N., Wandelt, B. D., Sutter, P. M., Lavaux, G., & Warren, M. S., 2014, Phys. Rev. Lett., 112, 041304 Google Scholar
Hamaus, N., Sutter, P. M., & Wandelt, B. D., 2014, Phys. Rev. Lett., 112, 251302 Google Scholar
Hamaus, N., Sutter, P. M., Lavaux, G., & Wandelt, B. D., 2014, ArXiv e-prints, arXiv:1409.3580Google Scholar
Hotchkiss, S., Nadathur, S., Gottlöber, S., et al., 2014, ArXiv e-prints, arXiv:1405.3552Google Scholar
Kazin, E. A. et al., 2010, ApJ, 710, 1444 Google Scholar
Krause, E., Chang, T.-C., Doré, O., & Umetsu, K., 2013, ApJ, 762, L20 Google Scholar
Lavaux, G. & Wandelt, B. D., 2012, ApJ, 754, 109 Google Scholar
Nadathur, S. & Hotchkiss, S., 2014, MNRAS, 440, 1248 Google Scholar
Nadathur, S., Hotchkiss, S., & Sarkar, S., 2012, JCAP, 1206, 042 Google Scholar
Nadathur, S., Hotchkiss, S., Diego, J. M., et al., 2014, ArXiv e-prints, arXiv:1407.1729Google Scholar
Neyrinck, M. C., 2008, MNRAS, 386, 2101 Google Scholar
Paz, D., Lares, M., Ceccarelli, L., Padilla, N., & Lambas, D. G., 2013, MNRAS, 436, 3480 Google Scholar
Ricciardelli, E., Quilis, V., & Varela, J., 2014, MNRAS, 440, 601 Google Scholar
Sheth, R. K. & van de Weygaert, R., 2004, MNRAS, 350, 517 Google Scholar
Sutter, P. M., Lavaux, G., Hamaus, N., Wandelt, B. D., Weinberg, D. H., & Warren, M. S., 2014, MNRAS, 442, 462 Google Scholar
Watson, W. A. et al., 2014, MNRAS, 438, 412 Google Scholar