Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T06:32:57.709Z Has data issue: false hasContentIssue false

Unusual migration of the prominence activities in recent solar cycles

Published online by Cambridge University Press:  06 January 2014

Masumi Shimojo*
Affiliation:
National Astronomical Observatory of Japan2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan email: masumi.shimojo@nao.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the prominence eruptions and disappearances observed with the Nobeyama Radioheliograph during over 20 years for studying the anomaly of the recent solar cycle. Although the sunspot number of Cycle 24 is smaller than the previous one dramatically, the occurrence rate, size and radial velocity of the prominence activities are not changed significantly. We also found that the occurrence of the prominence activities in the northern hemisphere is normal from the duration of the cycle and the migration of the producing region of the prominence activities. On the other hand, the migration in the southern hemisphere significantly differs from that in the northern hemisphere and the previous cycles. Our results suggest that the anomalies of the global magnetic field distribution started at the solar maximum of Cycle 23.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Gopalswamy, N., Lara, A., Yashiro, S., & Howard, R. A. 2003 ApJ, 598, L63Google Scholar
Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., & Howard, R. A. 2003 ApJ, 586, 562CrossRefGoogle Scholar
Gopalswamy, N., Yashiro, S., Mäkelä, P., Michalek, G., Shibasaki, K., & Hathaway, D. H. 2012 ApJ (Letter), 750, L42Google Scholar
Hathaway, D. H. & Rightmire, L. 2010 Science, 327, 1350Google Scholar
Lee, C. O., Luhmann, J. G., Zhao, X. P., Liu, Y., Riley, P., Arge, C. N., Russell, C. T., & de Pater, I. 2009 Solar Phys., 256, 345CrossRefGoogle Scholar
Li, K. J., Li, Q. X., Gao, P. X., & Shi, X. J. 2008 JGR, 113, A11108Google Scholar
Li, K. J., 2010, MNRAS, 405, 1040Google Scholar
Livingston, W., Penn, M. J., & Svalgaard, L. 2012 ApJ (Letter), 757, L8Google Scholar
Makarov, V. I., Tlatov, A. G., & Sivaraman, K. R. 2001 Solar Phys., 202, 11CrossRefGoogle Scholar
Mouradiam, I. Z. & Soru-Escaut, I. 1994 A&A, 290, 279Google Scholar
Nakajima, H., et al. 1994 Proceeding of the IEEE 82 5, 705Google Scholar
Petrie, G. J. D. 2012 Solar Phys. 281, 577Google Scholar
Shimojo, M., Yokoyama, T., Asai, A., Nakajima, H., & Shibasaki, K. 2006 PASJ 58 1, 85Google Scholar
Shimojo, M., 2013 PASJ 65 S1, in pressGoogle Scholar
Shiota, D., Tsuneta, S., Shimojo, M., Sako, N., Orozco Suárez, D., & Ishikawa, R. 2012 ApJ, 753, 157CrossRefGoogle Scholar
SIDC-team 1992–2013 World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number, online catalogue of the sunspot index: http://sidc.oma.be/sunspot-data/Google Scholar
Svalgaard, L. & Kamide, Y., 2013, ApJ, 763, 23Google Scholar
Thompson, B. J., et al. 2011 Solar Phys., 274, 29Google Scholar
Topka, K., Moore, R., Labonte, B. J., & Howard, R. 1982 Solar Phys., 79, 231CrossRefGoogle Scholar
Waldmeier, M. 1973 Solar Phys, 28, 389Google Scholar
Wang, Y.-M., Robbrecht, E., & Sheeley, N. R. Jr. 2009 ApJ, 707, 1372Google Scholar