Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T17:51:42.265Z Has data issue: false hasContentIssue false

Using low-frequency pulsar observations to study the 3-D structure of the Galactic magnetic field

Published online by Cambridge University Press:  08 May 2018

C. Sobey
Affiliation:
International Centre for Radio Astronomy Research - Curtin University, GPO Box U1987, Perth, WA 6845, Australia CSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Kensington, WA 6151, Australia email: c.sobey@curtin.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic magnetic field (GMF) plays a role in many astrophysical processes and is a significant foreground to cosmological signals, such as the Epoch of Reionization (EoR), but is not yet well understood. Dispersion and Faraday rotation measurements (DMs and RMs, respectively) towards a large number of pulsars provide an efficient method to probe the three-dimensional structure of the GMF. Low-frequency polarisation observations with large fractional bandwidth can be used to measure precise DMs and RMs. This is demonstrated by a catalogue of RMs (corrected for ionospheric Faraday rotation) from the Low Frequency Array (LOFAR), with a growing complementary catalogue in the southern hemisphere from the Murchison Widefield Array (MWA). These data further our knowledge of the three-dimensional GMF, particularly towards the Galactic halo. Recently constructed or upgraded pathfinder and precursor telescopes, such as LOFAR and the MWA, have reinvigorated low-frequency science and represent progress towards the construction of the Square Kilometre Array (SKA), which will make significant advancements in studies of astrophysical magnetic fields in the future. A key science driver for the SKA-Low is to study the EoR, for which pulsar and polarisation data can provide valuable insights in terms of Galactic foreground conditions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Adam, R., et al. 2016, A&A, 596, A103Google Scholar
Aharonian, F., et al. 2012, Space Sci. Rev., 166, 97CrossRefGoogle Scholar
Aliu, E., et al. 2011, Science, 334, 69Google Scholar
Bhat, N. D. R., et al. 2016, ApJ, 818, 86CrossRefGoogle Scholar
Bilous, A. V., et al. 2016, A&A, 591, A134Google Scholar
Brentjens, M. A. & de Bruyn, A. G., 2005, A&A, 441, 1217Google Scholar
Burn, B. J., 1966, MNRAS, 133, 67CrossRefGoogle Scholar
Cooper, B. F. C. & Price, R. M., 1962, Nature, 195, 1084CrossRefGoogle Scholar
Crutcher, R. M., 2012, ARAA, 50, 29CrossRefGoogle Scholar
Dai, S., et al. 2017, MNRAS, 472, 1458CrossRefGoogle Scholar
Eatough, R. P., et al. 2013, Nature, 501, 391CrossRefGoogle Scholar
Essey, W., et al. 2011, MNRAS, 35, 135Google Scholar
Ghosh, T., et al. 2017, A&A, 601, A71Google Scholar
Goldreich, P. & Julian, W. H., 1969, ApJ, 157, 869CrossRefGoogle Scholar
Gupta, Y., et al. 2017, Current Science, 113, 707CrossRefGoogle Scholar
Hale, G. E., 1908, ApJ, 28, 315CrossRefGoogle Scholar
Hall, J. S., 1949, Science, 109, 166CrossRefGoogle Scholar
Han, J. L., et al. 1999, MNRAS, 306, 371CrossRefGoogle Scholar
Han, J. L., et al. 2006, ApJ, 642, 868CrossRefGoogle Scholar
Han, J. L., et al. 2015, in Bourke, et al., eds, Proc. Sci, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 41Google Scholar
Hassall, T. E., et al. 2012, A&A, 543, A66Google Scholar
Haverkorn, M., 2015, in de Gouveia Dal Pino, E. M., et al., eds, Astrophysics and Space Science Library, Magnetic Fields in Diffuse Media, 407, 483CrossRefGoogle Scholar
Haverkorn, M., et al. 2015, in Bourke, et al., eds, Proc. Sci, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 96Google Scholar
Hewish, A., et al. 1968, Nature, 217, 709CrossRefGoogle Scholar
Hiltner, W. A., 1949, Science, 109, 165CrossRefGoogle Scholar
Howard, T. A., et al. 2016, ApJ, 831, 208CrossRefGoogle Scholar
Jaffe, T. R., et al. 2010, MNRAS, 401, 1013CrossRefGoogle Scholar
Jansson, R. & Farrar, G. R., 2012, ApJ, 757, 14CrossRefGoogle Scholar
Jelić, V. & de Bruyn, A. G., et al. 2015, A&A, 583, A137Google Scholar
Kondratiev, V. I., et al. 2016, A&A, 585, A128Google Scholar
Lenc, E., et al. 2017, PASA, 34, e040CrossRefGoogle Scholar
Mao, S. A., et al. 2012, ApJ, 755, 21CrossRefGoogle Scholar
Manchester, R. N., 1972, ApJ, 172, 43CrossRefGoogle Scholar
Manchester, R. N., 1974, ApJ, 188, 637CrossRefGoogle Scholar
Manchester, R. N., et al. 2005, AJ, 129, 1993CrossRefGoogle Scholar
McSweeney, S. J., et al. 2017, ApJ, 836, 224CrossRefGoogle Scholar
Nota, T. & Katgert, P., 2010, A&A, 513, A65Google Scholar
Noutsos, A., et al. 2008, MNRAS, 386, 1881CrossRefGoogle Scholar
Noutsos, A., et al. 2015, A&A, 576, A62Google Scholar
Oppermann, N., et al. 2015, A&A, 575, A118Google Scholar
Pilkington, J. D. H., et al. 1968, Nature, 218, 126CrossRefGoogle Scholar
Rand, R. J. & Lyne, A. G., 1994, A&A, 268, 497Google Scholar
Sobey, C., et al. 2015, MNRAS, 451, 2493CrossRefGoogle Scholar
Sotomayor-Beltran, C., et al. 2013, A&A, 552, A58Google Scholar
Sun, X.-H. & Reich, W., 2010, Research in Astron. Astrophys., 10, 1287CrossRefGoogle Scholar
Taylor, G. B., et al. 2012, JAI, 1, 1250004Google Scholar
Tiengo, A., et al. 2013, Nature, 500, 312CrossRefGoogle Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007CrossRefGoogle Scholar
Tremblay, S. E., et al. 2015, PASA, 32, e005CrossRefGoogle Scholar
Van Eck, C. L., et al. 2011, ApJ, 728, 97CrossRefGoogle Scholar
Van Eck, C. L., et al. 2017, A&A, 597, A98Google Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2Google Scholar
Yao, J. M., et al. 2017, ApJ, 835, 29CrossRefGoogle Scholar