Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T05:29:56.903Z Has data issue: false hasContentIssue false

The vibrational signatures of polyaromatic hydrocarbons on an ice surface

Published online by Cambridge University Press:  12 October 2020

Victoria H.J. Clark
Affiliation:
University College London, Gower St, Bloomsbury, London, WC1E 6BT, U email: v.clark.17@ucl.ac.uk
David M. Benoit
Affiliation:
E.A. Milne centre for Astrophysics, University of Hull, Hull, HU6 7RX, UK email: d.benoit@hull.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use quantum chemical techniques to model the vibrational spectra of small aromatic molecules on a proton-ordered hexagonal crystalline water ice (XIh) model. We achieve a good agreement with experimental data by accounting for vibrational anharmonicity and correcting the potential energy landscape for known failures of density functional theory. A standard harmonic description of the vibrational spectra only leads to a broad qualitative agreement.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1985, ApJ, 290, L25 CrossRefGoogle Scholar
Benoit, D. M. 2004, J. Chem. Phys., 120, 562 CrossRefGoogle Scholar
Benoit, D. M. 2015, J. Phys. Chem. A, 119, 11583 CrossRefGoogle Scholar
Bernstein, M. P., Sandford, S. A., & Allamandola, L. J. 2005, ApJS, 161, 53 CrossRefGoogle Scholar
Bouwman, J., Cuppen, H. M., Bakker, A., et al. 2010, A&A, 511, A33Google Scholar
Christiansen, O., Stanton, J. F., & Gauss, J. 1998, J. Chem. Phys., 108, 3987CrossRefGoogle Scholar
Hagen, W., Tielens, A. G. G. M., & Greenberg, J. M. 1983, A&AS, 51, 389 Google Scholar
Hirsch, T. K. & Ojame, L. 2004, J. Phys. Chem. B, 108, 15856 CrossRefGoogle Scholar
Hony, S., Van Kerckhoven, C., Peeters, E., et al. 2001, A&A, 370, 1030 Google Scholar
Kesharwani, M. K., Brauer, B., Martin, J. M. L. 2010, J. Chem. Phys., 119, 1701 CrossRefGoogle Scholar
Michoulier, E., Noble, J. A., Simon, A., et al. 2018, PCCP, 20, 8753 CrossRefGoogle Scholar
Neese, F. 2012, WIREs Comput Mol Sci, 73, 2Google Scholar
Sandford, S. A., Bernstein, M. P., & Allamandola, L. J. 2004, ApJ, 607, 346 CrossRefGoogle Scholar
Scribano, Y., & Benoit, D. M. 2008, Chem. Phys. Lett., 458, 384 CrossRefGoogle Scholar
Takatani, T., Hohenstein, E. G., Malagoli, M., et al. 2010, J. Chem. Phys., 132, 144104 CrossRefGoogle Scholar
Wan, L.-J. & Itaya, K. 1997, Langmuir, 13, 7173 CrossRefGoogle Scholar