Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:38:57.308Z Has data issue: false hasContentIssue false

Void asymmetries in the cosmic web: a mechanism for bulk flows

Published online by Cambridge University Press:  12 October 2016

J. Bland-Hawthorn
Affiliation:
Sydney Institute for Astronomy, University of Sydney, School of Physics A28, NSW 2006, Australia email: jbh@physics.usyd.edu.au
S. Sharma
Affiliation:
Sydney Institute for Astronomy, University of Sydney, School of Physics A28, NSW 2006, Australia email: jbh@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent ΛCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The {\it Cosmicflows-2} survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a “local sheet” of galaxies that borders a “local void” with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km s-1 Mpc-1. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ∼ 260 km s-1. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do {\it not} find any evidence for this effect.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition, ISBN 978-0-691-13026-2, Princeton University Press, PrincetonCrossRefGoogle Scholar
Bland-Hawthorn, J., in IAU Symp. 309, Galaxy in 3D across the Universe, Ziegler, B. L., Combes, F., Dannerbauer, H., Verdugo, M., Eds. (Cambridge: Cambridge Univ. Press), in pressGoogle Scholar
Blanton, M. R. & Moustakas, J. 2009, ARAA, 47, 159 CrossRefGoogle Scholar
Bundy, K. et al. 2014, AJ, in pressGoogle Scholar
Burstein, D., Faber, S. M., & Dressler, A. 1990, ApJ, 354, 18 CrossRefGoogle Scholar
Codis, S., Pichon, C., Devriendt, J., et al. 2012, MNRAS, 427, 3320 CrossRefGoogle Scholar
Cooper, M. C., Tremonti, C. A., Newman, J. A., & Zabludoff, A. I. 2008, MNRAS, 390, 245 CrossRefGoogle Scholar
Croom, S. M., Lawrence, J. S, Bland-Hawthorn, J., Bryant, J. J. et al. 2012, MNRAS, 421, 872 Google Scholar
Dekel, A. 1983, ApJ, 264, 373 CrossRefGoogle Scholar
Eldridge, O. C. & Feix, M. 1963, Phys. Fluids, 6, 398 CrossRefGoogle Scholar
Gómez, P. L., Nichol, R. C., Miller, C. J., et al. 2003, ApJ, 584, 210 CrossRefGoogle Scholar
Gordon, C. & Lewis, A. 2003, Phys. Rev. D, 67, 123513 CrossRefGoogle Scholar
Lewis, I., Balogh, M., De Propris, R., et al. 2002, MNRAS, 334, 673 CrossRefGoogle Scholar
Malaney, R. A. & Mathews, G. J. 1993, Phys. Rep., 229, 145 CrossRefGoogle Scholar
Mastropietro, C. & Burkert, A. 2008, MNRAS, 389, 967 CrossRefGoogle Scholar
Melott, A. L. 1983, MNRAS, 202, 595 CrossRefGoogle Scholar
Metuki, O., Libeskind, N. I., Hoffman, Y., Crain, R. A., & Theuns, T. 2014, astro-ph/1405.0281Google Scholar
Nichols, M. & Bland-Hawthorn, J. 2013, ApJ, 775, 97 CrossRefGoogle Scholar
Pichon, C., Pogosyan, D., Kimm, T. et al. 2011, MNRAS, 418, 2493 CrossRefGoogle Scholar
Rubin, V. C., Thonnard, N., Ford, W. K. Jr., & Roberts, M. S. 1976, AJ, 81, 719 CrossRefGoogle Scholar
Schaye, J., Crain, R. A., Bower, R. G., et al. 2014, arXiv:1407.7040Google Scholar
Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, ApJ, 759, 23 CrossRefGoogle Scholar
Sun, M., Voit, G. M., Donahue, M., et al. 2009, ApJ, 693, 1142 CrossRefGoogle Scholar
Teles, T. N., Levin, Y., & Pakter, R. 2011, MNRAS, 417, L21 CrossRefGoogle Scholar
Tully, R. B., Shaya, E. J., Karachentsev, I. D., et al. 2008, ApJ, 676, 184 CrossRefGoogle Scholar
Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86 CrossRefGoogle Scholar
Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science, 334, 948 CrossRefGoogle Scholar
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, arXiv:1405.2921Google Scholar
Yamashiro, T., Gouda, N., & Sakagami, M. 1992, Progress of Theoretical Physics, 88, 269 CrossRefGoogle Scholar