Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:50:40.486Z Has data issue: false hasContentIssue false

VSTAR models of the hot Jupiter HD 189733b

Published online by Cambridge University Press:  06 January 2014

Kimberly Bott
Affiliation:
Department of Astrophysics, University of New South Wales, Kensington, Sydney, Australia email: k.bott@unsw.edu.au
Lucyna Kedziora-Chudczer
Affiliation:
Department of Astrophysics, University of New South Wales, Kensington, Sydney, Australia email: k.bott@unsw.edu.au
Jeremy Bailey
Affiliation:
Department of Astrophysics, University of New South Wales, Kensington, Sydney, Australia email: k.bott@unsw.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Past analysis of HD 189733b's atmosphere has been a cause for some debate, with conflicting findings regarding water and sodium abundances and the presence of a high altitude haze. We present our models of HD 189733b's atmospheric composition using VSTAR (Versatile Software for Transfer of Atmospheric Radiation). Since the effective temperature of the planet is expected to be approximately 5000K, newly available high-temperature spectral line lists were used.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Bailey, J. & Kedziora, L. 2012, MNRAS 419 19131929CrossRefGoogle Scholar
Berdyugina, S. V., Berdyugin, A. V., Fluri, D. M., & Piirola, V. 2008, ApJL 673 L83–L86Google Scholar
Bouchy, F., Udry, S., Mayor, M., et al. 1995, A&A 444 L15–L19Google Scholar
Charbonneau, D., Knutson, H. A., Barman, , et al. 2008, ApJ 686 13411348CrossRefGoogle Scholar
de Kok, R. J., Brogi, M., Snellen, I. A. G., Birkby, J., Albrecht, S., & de Mooij, E. J. W. 2013, A&A, 554, A82Google Scholar
Fortney, J. J., Lodders, K., Marley, M. S., & Freedman, R. S. 2007, ApJ 678 14191435CrossRefGoogle Scholar
Grillmair, C. J., Burrows, A., Charbonneau, , et al. 2008, Nature 456 767769Google Scholar
Madhusudan, N. & Seager, S. 2009, ApJ, 707, 24CrossRefGoogle Scholar
Lee, J. M., Fletcher, L. N., & Irwin, P. G. J. 2011, MNRAS 420 170182CrossRefGoogle Scholar
Pont, F., Sing, D. K., Gibson, N. P., Aigrain, S., Henry, G., & Husnoo, N. 2013, MNRAS 432 29172944Google Scholar
Swain, M. R., Vasisht, G., Tinetti, G., et al. 2009, ApJL 690 L114L117Google Scholar
Swain, M. R., Tinetti, G., Vasisht, G., et al. 2009, ApJ 704 16161621Google Scholar
Tinetti, G., Vidal-Madjar, A., Liang, M.-C., et al. 2007, Nature 448 169171Google Scholar
Wiktorowicz, S. J. 2009, ApJ 696 11161124Google Scholar