Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T05:27:24.208Z Has data issue: false hasContentIssue false

VVV Microlensing events in the far side of the Milky Way

Published online by Cambridge University Press:  14 May 2020

María Gabriela Navarro
Affiliation:
Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. Fernández Concha 700, Las Condes, Santiago, Chile Dipartimento di Fisica, Università di Roma La Sapienza, P.le Aldo Moro, 2, I00185 Rome, Italy email: mariagabriela.navarro@uniroma1.it Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436, Santiago, Chile
Dante Minniti
Affiliation:
Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. Fernández Concha 700, Las Condes, Santiago, Chile Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436, Santiago, Chile Vatican Observatory, V00120 Vatican City State, Italy
Rodrigo Contreras Ramos
Affiliation:
Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436, Santiago, Chile Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to study the most reddened areas of the Milky Way we used near-IR data from the VVV Survey. For the first time, the VISTA telescope allows us to observe the mid-plane through the Galactic bulge and study the disk in the other side of the Milky Way. Motivated by the detection of hundreds of microlensing events in the inner regions of the Galaxy, we propose three new configurations of microlensing events, placing the sources in the far-disk and the lenses in the far-disk/bulge/near-disk. These new configurations will change the usual way to interpret the timescale distributions due to the different populations along the line of sight, that exhibit varied transverse velocities and relative distances.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bond, I. A., Abe, F., Dodd, R. J., et al. 2001, MNRAS, 327, 86810.1046/j.1365-8711.2001.04776.xCrossRefGoogle Scholar
Collaboration, Gaia, Babusiaux, C., van Leeuwen, F., et al. 2018, A&A, 616, 10Google Scholar
Gonzalez, O. A., Minniti, D., Valenti, E., et al. 2018, MNRAS, 481, L13010.1093/mnrasl/sly171CrossRefGoogle Scholar
Minniti, D., Lucas, P. W., Emerson, J., et al. 2010, New Astron., 15, 43310.1016/j.newast.2009.12.002CrossRefGoogle Scholar
Minniti, D., Saito, S. K., Gonzalez, O. A., et al. 2018, A&A, 616, A26Google Scholar
Navarro, M. G., Minniti, D. & Contreras Ramos, R. 2017, ApJ (Letters), 851, 13Google Scholar
Navarro, M. G., Minniti, D., & Contreras Ramos, R. 2018, ApJ (Letters), 865, 5Google Scholar
Shvartzvald, Y., Bryden, G., Gould, A., et al. 2017, MNRAS, 457, 408910.1093/mnras/stw191CrossRefGoogle Scholar
Shvartzvald, Y., Novati, S. C., Gaudi, B. S., et al. 2018, ApJ (Letters), 857, 8Google Scholar
Udalski, A., Szymanski, M., Kaluzny, J., et al. 1993, AcA, 43, 289Google Scholar