Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T22:22:01.206Z Has data issue: false hasContentIssue false

Water on Planets

Published online by Cambridge University Press:  21 October 2010

James F Bell III*
Affiliation:
Dept. of Astronomy, Cornell University, 402 Space Sciences Bldg., Ithaca NY 14853USA email: jfb8@cornell.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Water is an abundant molecule in the Cosmos. It has exploitable and unique spectroscopic and physical properties and has been found to be ubiquitous in places that we would expect in the standard model of solar system formation and nebular condensation: beyond the snow line in outer solar system planets, moons, asteroids, and comets. However, water is also an important constituent of planetary bodies (dominating at least one of their surfaces) in the inner solar system, likely indicating significant mixing between inner and outer solar system reservoirs of water during planetary accretion and the early history of the solar system. Water has played a critical role in the differential evolution of the terrestrial planets Venus, Earth, and Mars, and the concept of the “habitable zone” where liquid water could be stable on an Earth-like planet provides a starting point for assessing the habitability of worlds in our solar system and beyond. Examples of potentially habitable environments outside this zone in our own solar system warn us that this concept should only be a guide, however-important exceptions will no doubt occur. Recent discoveries of past liquid water and abundant present subsurface ice on Mars, of water reservoirs in unexpected places like the poles of Mercury and the Moon and the subsurface of Enceladus, of water in circumstellar disks and in the atmospheres of extrasolar planets, and the expectation of the discovery of water on Earth-like worlds in the habitable zones around other stars make this an exciting time in the study of water on planets both in our own solar system, and beyond.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Abe, Y., Ohtani, E., Okuchi, T., Righter, K., & Drake, M. J. “Water in the early Earth”, in “Origin of the Earth and Moon”, edited by Canup, R. M. and Righter, K., Univ. of Ariz. Press, Tucson, 2000 pp. 413433CrossRefGoogle Scholar
Albarède, F.Volatile accretion history of the terrestrial planets and dynamic implications, Nature, 461, 12271233, 2009.Google Scholar
Atreya, S. K., Atmospheres and Ionospheres of the Outer Planets and Their Satellites, 234 pp., Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar
Baker, V. R.Water and the martian landscape, Nature, 412, 228236, 2001.Google Scholar
Barucci, M. A., “Composition and Surface Properties of Transneptunian Objects and Centaurs” in The Solar System Beyond Neptune, Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A. (eds.), University of Arizona Press, Tucson, pp. 143160, 2008.Google Scholar
Bell III, J. F. (Editor) The Martian Surface: Composition, Mineralogy, and Physical Properties, Cambridge University Press (ISBN-13: 9780521866989), Cambridge, 688 pp., 2008.CrossRefGoogle Scholar
Binzel, R. P., Lupishko, D. F., DiMartino, M., Whiteley, R. J., & Hahn, G. J., “Physical Properties of Near-Earth Asteroids”, in Asteroids III (Bottke, W.F. Jr. et al. , eds.), pp. 255271, University of Arizona Press., 2002.CrossRefGoogle Scholar
Boss, A. P.Formation of gas and ice giant planets, Earth Planet. Sci. Lett., 202, 513523, 2002.CrossRefGoogle Scholar
Bottke, W. F., Cellino, A., Paolicchi, P., & Binzel, R. P. (editors), Asteroids III, Univ. Arizona Press, 785 pp.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., Reedy, R. C., & Keller, J. M., “Elemental abundances determined via the Mars Odyssey GRS”, Chapter 5 in “The Martian Surface: Composition, Mineralogy, and Physical Properties” (Bell III, J.F., editor), Cambridge Univ. Press, 105124, 2008.Google Scholar
Canup, R. M. & Asphaug, E., Origin of the Moon in a giant impact near the end of the Earth's formation, Nature, 412, 708712, 2001.CrossRefGoogle Scholar
Carr, M. H., Water on Mars, Oxford Univ. Press, 248 pp., 1996.CrossRefGoogle Scholar
Carr, M. H., Belton, M. J. S., Chapman, C. R., Davies, M. E., Geissler, P., Greenberg, R., McEwen, A. S., Tufts, B. R., Greeley, R., Sullivan, R., Head, J. W., Pappalardo, R. T., Klaasen, K. P., Johnson, T. V., Kaufman, J., Senske, D., Moore, J., Neukum, G., Schubert, G., Burns, J. A., Thomas, P., & Veverka, J., Evidence for a subsurface ocean on Europa, Nature, 391, 363365, 1998.CrossRefGoogle ScholarPubMed
Cassen, P., Utilitarian models of the solar nebula, Icarus 112, 405429, 1994.CrossRefGoogle Scholar
Chambers, J. E., Planetary accretion in the inner Solar System, Earth Planet. Sci. Lett., 223, 241252, 2004.CrossRefGoogle Scholar
Clark, R. N., Water frost and ice: The near-infrared spectral reflectance 0.65-2.5 μm, J Geophys. Res., 86, 30873096, 1981.CrossRefGoogle Scholar
Clark, R. N., Fanale, F. P., & Gaffey, M. J., “Surface composition of natural satellites”, in “Satellites”, ed. Burns, J.A. and Matthews, M.S., pp. 437491. Tucson: Univ. Arizona Press, 1986.CrossRefGoogle Scholar
Colaprete, A., Briggs, G., Ennico, K., Wooden, D., Heldmann, J., Sollitt, L., Asphaug, E., Korycansky, D., Schultz, P., Christensen Galal, K., Bart, G. D., & the LCROSS Team, An Overview of the Lunar Crater Observation and Sensing Satellite (LCROSS) Mission Results from Swing-by and Impact, Lunar Exploration Analysis Group, November 16–19, Houston, Texas. LPI Contribution No. 1515, p. 11, 2009.Google Scholar
Cruikshank, D. P., Roush, T. L., Bartholomew, M. J., Geballe, T. R., Pendleton, Y. J., White, S., Bell III, J. F., Davies, J. K., Owen, T. C., deBergh, C., Tholen, D., Bernstein, M. P., Brown, R. H., Tryka, K. A., & Dalle Ore, C. M., The composition of Centaur 5145 Pholus, Icarus, 135, 389407, 1998.CrossRefGoogle Scholar
Davies, J. H., Did a mega-collision dry Venus' interior? Earth Planet. Sci. Lett., 268, 376383, 2008.CrossRefGoogle Scholar
de Bergh, C., Schmitt, B., Moroz, L. V., Quirico, E., & Cruikshank, D. P., “Laboratory Data on Ices, Refractory Carbonaceous Materials, and Minerals Relevant to Transneptunian Objects and Centaurs”, in “The Solar System Beyond Neptune”, Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A. (eds.), University of Arizona Press, Tucson, pp. 483506, 2008.Google Scholar
Donahue, T. M. & Russell, C. T., “The Venus Atmosphere and Ionosphere and their Interactions with the Solar Wind: An Overview,” in “Venus II”, Univ. Arizona Press, pp. 331, 1997.Google Scholar
Dotto, E., Emery, J. P., Barucci, M. A., Morbidelli, A., & Cruikshank, D. P., “De Troianis: The Trojans in the planetary system,” in “The Solar System Beyond Neptune” (Barucci, Boehnhardt, Cruikshank, Morbidelli, Eds.), pp. 383396, University of Arizona Press, Tucson, 2008.Google Scholar
Drake, M. J., Origin of water in the terrestrial planets, Met. & Plan. Sci., 40, 519527, 2005.CrossRefGoogle Scholar
Drake, M. J. & Righter, K., Determining the composition of the Earth, Nature, 416, 3946, 2002.CrossRefGoogle ScholarPubMed
Encrenaz, T., Water in the solar system, Ann. Rev. Astron. Astrophys., 46, 5787, 2008.CrossRefGoogle Scholar
Feldman, W. C., Mellon, M. C., Gasnault, O., Maurice, S., & Prettyman, T. H., “Volatiles on Mars: Scientific results from the Mars Odyssey Neutron Spectrometer”, Chapter 6 in “The Martian Surface: Composition, Mineralogy, and Physical Properties (Bell III, J.F., editor)”, Cambridge Univ. Press, 125152, 2008.CrossRefGoogle Scholar
Festou, M. C., Keller, H. U., & Weaver, H. A. (editors), Comets II, Univ. Arizona Press, 745 pp., 2004.Google Scholar
Feuchtgruber, H., Lellouch, E., de Graauw, T., Bézard, B., Encrenaz, T., & Griffin, M., External supply of oxygen to the atmospheres of the giant planets, Nature, 389, 159162, 1997.CrossRefGoogle Scholar
Gaffey, M. J., Cloutis, E. A., Kelley, M. S., & Reed, K. L., “Mineralogy of Asteroids”, in Asteroids III (Bottke, W.F. Jr. et al. , eds.), pp. 653667. University of Arizona Press., 2002.Google Scholar
Gomes, R., Levison, H.F., Tsiganis, K., & Morbidelli, A., Origin of the cataclysmic late heavy bombardment period of the terrestrial planets, Nature 435, 466469, 2005.CrossRefGoogle ScholarPubMed
Grundy, W. M., Buie, M. W., Stansberry, J. A., Spencer, J. R., & Schmitt, B., Near-Infrared Spectra of Icy Outer Solar System Surfaces: Remote Determination of H2O Ice Temperatures, Icarus, 142, 536549, 1999.CrossRefGoogle Scholar
Harmon, J. K., Slade, M. A., Vélez, R. A., Crespo, A., Dryer, M. J., & Johnson, J. M., Radar mapping of Mercury's polar anomalies, Nature, 369, 213215, 1994.CrossRefGoogle Scholar
Hart, M. H., Habitable zones about main sequence stars, Icarus, 37, 351357, 1979.CrossRefGoogle Scholar
Holland, G., Cassidy, M., & Ballantine, C. J., Meteorite Kr in Earth's mantle suggests a late accretionary source for the atmosphere, Science, 326, 15221525, 2009.CrossRefGoogle ScholarPubMed
Horner, J., Mousis, O., & Hersant, F., Constraints on the Formation Regions of Comets from their D:H Ratios, in Earth, Moon, Planets, 100, 4356, 2007.CrossRefGoogle Scholar
International Astronomical Union, “IAU 2006 General Assembly: Resolutions 5 and 6”, http://www.iau.org/static/resolutions/Resolution_GA26-5-6.pdf, Aug. 24, 2006.Google Scholar
Jewitt, D. C. & Luu, J. X., CCD spectra of asteroids II: The Trojans as spectral analogs of cometary nuclei, Astron. J., 100, 933944, 1990.CrossRefGoogle Scholar
Jones, T. D., Lebofsky, L. A., Lewis, J. S., & Marley, M. S., The composition and origin of the C, P, and D asteroids – Water as a tracer of thermal evolution in the outer belt, Icarus, 88, 172192, 1990.CrossRefGoogle Scholar
Kasting, J. & Catling, D., Evolution of a Habitable Planet, Ann. Rev. Astron. Astrophys., 41, 429463, 2003.CrossRefGoogle Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T., Volwerk, M., Walker, R. J., & Zimmer, C., Galileo Magnetometer measurements: A stronger case for a subsurface ocean at Europa, Science, 289, 13401343, 2000.CrossRefGoogle ScholarPubMed
Korycansky, D. G., Bodenheimer, P., Cassen, P., & Pollack, J. B., One-dimensional calculations of a large impact on Uranus, Icarus 84, 528541, 1990.CrossRefGoogle Scholar
Lecar, M., Podolak, M., Sasselov, D., Chiang, E., On the location of the snow line in a protoplanetary disk, Ap. J., 640, 11151118, 2006.CrossRefGoogle Scholar
Lellouch, E., Bézard, B., Moses, J. I., Davis, G. R., Drossart, P., Feuchtgruber, H., Bergin, E. A., Moreno, R., & Encrenaz, T., The Origin of Water Vapor and Carbon Dioxide in Jupiter's Stratosphere, Icarus, 159, 112131, 2002.CrossRefGoogle Scholar
Lunine, J. I., The atmospheres of Uranus and Neptune, Ann. Rev. Astron. Astrophys., 31, 217263, 1993.CrossRefGoogle Scholar
Lunine, J. I., Chambers, J., Morbidelli, A., & Leshin, L. A., The origin of water on Mars, Icarus, 165, 18, 2003.CrossRefGoogle Scholar
Luu, J. X. & Jewitt, D. C., Cometary activity in 2060 Chiron, Astron. J., 100, 913932, 1990.CrossRefGoogle Scholar
Luu, J. X., Jewitt, D. C., & Cloutis, E., Near-infrared spectroscopy of primitive Solar System objects. Icarus 109, 133144, 1994.CrossRefGoogle Scholar
Luu, J. X., Jewitt, D. C., & Trujillo, C., Water Ice in 2060 Chiron and Its Implications for Centaurs and Kuiper Belt Objects, Ap. J., 531, L151L154, 1990.CrossRefGoogle Scholar
Matson, D. L. & Brown, R. H., Solid-state greenhouses and their implications for icy satellites, Icarus, 77, 6781, 1989.CrossRefGoogle Scholar
McCord, T. B., Hansen, G. B., Matson, D. L., Johnson, T. V., Crowley, J. K., Fanale, F. P., Carlson, R. W., Smythe, W. D., Martin, P. D., Hibbitts, C. A., Granahan, J. C., & Ocampo, A., Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation, J. Geophys. Res., 104, 1182711852, 1999.CrossRefGoogle Scholar
McSween, H. Y., What we have learned about Mars from SNC meteorites, Meteoritics, 29, 757779, 1994.CrossRefGoogle Scholar
McSween, H. Y., Taylor, G. J., & Wyatt, M. B., Elemental composition of the Martian crust, Science, 324, 736739, 2009.CrossRefGoogle ScholarPubMed
Militzer, B., Hubbard, W. B., Vorberger, J., I Tamblyn, & Bonev, S. A., A Massive Core in Jupiter Predicted from First-Principles Simulations, Ap. J., 688, L45L48, 2008.CrossRefGoogle Scholar
Minor Planet Center, IAU/Smithsonian Astrophysical Observatory, lists of minor planets: http://www.cfa.harvard.edu/iau/lists/Lists.html, 2010.Google Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., & Cyr, K. E., Source regions and timescales for the delivery of water on Earth, Meteor. Planet. Sci., 35, 13091320, 2000.CrossRefGoogle Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R., Chaotic capture of Jupiter's Trojan asteroids in the early Solar System, Nature, 435, 462465, 2005.CrossRefGoogle ScholarPubMed
Nelson, M. L., Britt, D. T., & Lebofsky, L. A., Review of asteroid compositions, in Resources of Near-Earth Space, Univ. Arizona Press, pp. 493522, 1993.Google Scholar
Olkin, C. B., Young, E. F., Young, L. A., Grundy, W., Schmitt, B., Tokunaga, A., Owen, T., Roush, T., & Terada, H., Pluto's Spectrum from 1.0 to 4.2? m: Implications for Surface Properties, Astron. J., 133, 420431, 2007.CrossRefGoogle Scholar
Owen, T., The contributions of comets to planets, atmospheres, and life: Insights from Cassini-Huygens, Galileo, Giotto, and inner planet missions, Space Sci. Rev., 138, 301316, 2008.CrossRefGoogle Scholar
Planetary Science Institute, “Petition Protesting the IAU Planet Definition,” http://www.ipetitions.com/petition/planetprotest/, 2006.Google Scholar
Podolak, M., The location of the snow line in protostellar disks, Invited talk at IAU Symposium 263: Icy Bodies in the Solar System, Rio de Janeiro, Aug. 2009. arXiv preprint http://arxiv.org/abs/0911.4803v1.CrossRefGoogle Scholar
Pollack, J. B., Hubickjy, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y., Formation of the Giant Planets by Concurrent Accretion of Solids and Gas, Icarus, 124, 6285.CrossRefGoogle Scholar
Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T. V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J. A., Del Genio, A. D., Dones, L., Murray, C. D., & Squyres, S., Cassini Observes the Active South Pole of Enceladus, Science, 311, 13931401, 2006.CrossRefGoogle ScholarPubMed
Ragenauer-Lieb, K., Yuen, D., & Branlund, J., The initiation of subduction: criticalilty by addition of water? Science, 294, p. 578580, 2001.CrossRefGoogle Scholar
Rivkin, A. S., Howell, E. S., Vilas, F., & Lebofsky, L. A., “Hydrated Minerals on Asteroids: The Astronomical Perspective,” in Asteroids III (Bottke, W.F. Jr. et al. , eds.), pp. 235253, University of Arizona Press., 2002.CrossRefGoogle Scholar
Rivkin, A. S., Brown, R. H., Trilling, D. E., Bell III, J. F., & Plassmann, J. H., Near-infrared spectrophotometry of Phobos and Deimos, Icarus, 156, 6475, 2002.CrossRefGoogle Scholar
Selsis, F., Kasting, J. F., Levrard, B., Paillet, J., Ribas, I., & Delfosse, X., Habitable planets around the star Gliese 581 Astron. Astrophys., 476, 13731387, 2007.Google Scholar
Sicardy, B., Dynamics and Composition of Rings, Space Sci. Rev., 116, 457470, 2005.CrossRefGoogle Scholar
Smith, P. H. and 35 others, H2O at the Phoenix landing site, Science, 325, 5861, 2009.CrossRefGoogle ScholarPubMed
Smyth, J. R., Frost, D. J., Nestola, F., Holl, C. M., & Bromiley, G., Olivine hydration in the deep upper mantle: Effects of temperature and silica activity, Geophys. Res. Lett., 33, L15301, 2006.CrossRefGoogle Scholar
Stevenson, D. J. & Lunine, J. I., Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula, Icarus, 75, 146155, 1988.CrossRefGoogle Scholar
Sunshine, J., A'Hearn, M. F.; Groussin, O.; Li, J.-Y.; Belton, M. J. S.; Delamere, W. A.; Kissel, J.; Klaasen, K. P.; McFadden, L. A.; Meech, K. J.; Melosh, H. J.; Schultz, P. H.; Thomas, P. C.; Veverka, J.; Yeomans, D. K.; Busko, I. C.; Desnoyer, M.; Farnham, T. L.; Feaga, L. M.; Hampton, D. L.; Lindler, D. J.; Lisse, C. M.; & Wellnitz, D. D., Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1, Science, 311, 14531455, 2006.CrossRefGoogle ScholarPubMed
Sykes, M., Classifying Planets from a Geophysical Perspective, American Astronomical Society, AAS Meeting #214, #237.06; Bull. Amer. Astron. Soc., Vol. 41, p. 740, 2009.Google Scholar
Tinetti, G., Vidal-Madjar, A., Liang, M., Beaulieu, J. P., Yung, Y., Carey, S., Barber, R. J., Tennyson, J., Ribas, I., Allard, N., Ballester, G. E., Sing, D. K., & Selsis, F., Water vapour in the atmosphere of a transiting extrasolar planet, Nature, 448, 169171, 2007.CrossRefGoogle ScholarPubMed
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F., Origin of the orbital architecture of the giant planets of the Solar System, Nature, 435, 459461, 2005.CrossRefGoogle ScholarPubMed
Villanueva, G. L., Mumma, M. J., Bonev, B. P., DiSanti, M. A., Gibb, E. L., H. Bhnhardt, & Lippi, M., A Sensitive Search for Deuterated Water in Comet 8P/Tuttle, Ap. J. Lett., 690, L5L9, 2009.CrossRefGoogle Scholar
von Bloh, W., Bounama, C., Cuntz, M., & Franck, S., The habitability of super-Earths in Gliese 581, Astron. Astrophys., 476, 13651371, 2007.CrossRefGoogle Scholar
Walker, J. C. B., Hays, P. B., & Kasting, J. F., A negative feedback mechanism for the long term stabilization of the Earth's surface temperature, J. Geophys. Res., 86, 97769782, 1981.CrossRefGoogle Scholar
Warren, S. G.Optical properties of snow. Rev. Geophys. 20: 6789, 1982.CrossRefGoogle Scholar
Watson, D. M., Bohac, C. J., Hull, C., Forrest, W. J., Furlan, E., Najita, J., Calvet, N., d'Alessio, P., Hartmann, L., Sargent, B., Green, J. D., Kim, K.H. & Houck, J. R., The development of a protoplanetary disk from its natal envelope, Nature, 448, 10261028, 2007.CrossRefGoogle ScholarPubMed
Wong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B., & Owen, T. C., Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter, Icarus, 171, 153170, 2004.CrossRefGoogle Scholar
Zinner, E., “Interstellar cloud material in meteorites”, in “Meteorites and the Early Solar System” (ed. Kerridge, J.) Univ. Arizona Press, Tucson, pp. 956983, 1988.Google Scholar