Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T21:10:38.986Z Has data issue: false hasContentIssue false

Westerlund 1 as a Template for Massive Star Evolution

Published online by Cambridge University Press:  01 December 2007

Ignacio Negueruela
Affiliation:
Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apdo. 99, E03080 Alicante, Spain email: ignacio@dfists.ua.es
J. Simon Clark
Affiliation:
Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
Lucy J. Hadfield
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom
Paul A. Crowther
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With a dynamical mass Mdyn ~ 1.3×105 M and a lower limit Mcl > 5 × 104 M from star counts, Westerlund 1 is the most massive young open cluster known in the Galaxy and thus the perfect laboratory to study massive star evolution. We have developed a comprehensive spectral classification scheme for supergiants based on features in the 6000–9000Å range, which allows us to identify > 30 very luminous supergiants in Westerlund 1 and ~ 100 other less evolved massive stars, which join the large population of Wolf-Rayet stars already known. Though detailed studies of these stars are still pending, preliminary rough estimates suggest that the stars we see are evolving to the red part of the HR diagram at approximately constant luminosity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bonanos, A. Z. 2007, AJ, 133, 2696CrossRefGoogle Scholar
Brandner, W., Clark, J. S., Stolte, A., et al. 2008, A&A, 478, 137Google Scholar
Caron, G., Moffat, A. F. J., St-Louis, N., et al. 2003, AJ, 126, 1415CrossRefGoogle Scholar
Clark, J. S., Negueruela, I., 2004, A&A, 413, L15Google Scholar
Clark, J. S., Negueruela, I., Crowther, P. A., & Goodwin, S. P. 2005, A&A, 434, 949Google Scholar
Clark, J. S., Muno, M. P., Negueruela, I., et al. 2008, A&A, 477, 147Google Scholar
Crowther, P. A., Hadfield, L. J., Clark, J. S., et al. 2006, MNRAS, 372, 1407CrossRefGoogle Scholar
Ducati, J. R., Bevilacqua, C. M., Rembold, S. B., & Ribeiro, D. 2001, ApJ, 558, 309CrossRefGoogle Scholar
Humphreys, R. M. & McElroy, D. B. 1984, ApJ, 284, 565CrossRefGoogle Scholar
Kothes, R. & Dougherty, S. M. 2007, A&A, 468, 993Google Scholar
Martins, F., Schaerer, D., & Hillier, D. J. 2005, A&A, 436, 1049Google Scholar
Mengel, S. & Tacconi-Garman, L. E. 2008, in: Vesperini, , Giersz, M., & Sills, A., (eds.), Dynamical Evolution of Dense Stellar Systems (Cambridge: CUP), Proc IAU Symp 246 in press (arXiv:0711.1779)Google Scholar