Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T14:17:21.814Z Has data issue: false hasContentIssue false

Analysis of Approaches of Tolerance Allocation regarding to Economic Efficiency

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to examine the current state of research on tolerance-induced costs in Germany. Through a literature research already existing approaches for the determination of costs related to tolerances during the specification of technical components are pointed out and possible approaches for the reduction of these costs are presented. In addition, the actuality of these approaches will be considered. One question that is supposed to be answered here is to what state of standard for the specification of components these approaches can be assigned to. On the other hand, it should be clarified whether the existing approaches are applicable to the currently valid standard system of the Geometrical Product Specification (GPS).

Can the economic efficiency of the specifications selected for tolerancing be determined in a technical drawing during the product development process in accordance with GPS on the basis of the current state of research?

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Alder, K. (1997), “Innovation and Amnesia: Engineering Rationality and the Fate of Interchangeable Parts Manufacturing in France”, Technology and Culture, Vol. 38 No. 2, pp. 273311. https://doi.org/10.2307/3107124Google Scholar
Chase, K.W., Greenwood, W.H., Loosli, B.G. and Hauglund, L.F. (1990), “Least Cost Tolerance Allocation for Mechanical Assemblies with Automated Process Selection”, Manufacturing Review, Vol. 3 No. 2, pp. 4959.Google Scholar
Diplaris, S.C. and Sfantsikopoulos, M.M. (2000), “Cost-Tolerance Function: A New Approach for Cost Optimum Machining Accuracy”, The International Journal of Advanced Manufacturing Technology, Vol. 16 No. 1, pp. 3238.Google Scholar
Ehrlenspiel, K., Kiewert, A., Lindemann, U. and Mörtl, M. (2014), Kostengünstig Entwickeln und Konstruieren: Kostenmanagement bei der integrierten Produktentwicklung, Springer Vieweg (VDI-Buch), Berlin/Heidelberg.Google Scholar
Fütterer, O. (2005), Properties of Multivariate Statistics from the View-point of Industrial Application. [online] Available at: http://spectronet.de/portals/visqua/story_docs/vortraege_2005/050921_imeko/session_5/505_fuetterer_robert_bosch.pdf (27.02.2018).Google Scholar
International Organization for Standardization (ISO) (2019), ISO/TC 213: Dimensional and geometrical product specifications and verification. [online] Available at: https://www.iso.org/committee/54924.html (18.03.2019).Google Scholar
ISO 1101:2017-02. Geometrical product specifications (GPS): Geometrical tolerancing - Tolerances of form, orientation, location and run-out, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 12781:2011-04. Geometrical product specifications (GPS): Flatness, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 1302:2002-02. Geometrical product specifications (GPS): Indication of surface texture in technical product documentation, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 14638:2015-01. “Geometrical product specifications (GPS): Matrix model”, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 286-1:2010-04. “Geometrical product specifications (GPS): ISO code system for tolerances on linear sizes - Part 1: Basis of tolerances, deviations and fits”, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 286-2:2010-06. Geometrical product specifications (GPS): ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO 5459:2011-08. Geometrical product specifications (GPS): Geometrical tolerancing - Datums and datum systems, International Organization for Standardization (ISO), Switzerland.Google Scholar
ISO/TC 213 (2018), Welcome to ISO/TC 213. [online] Available at: https://committee.iso.org/home/tc213 (27.11.2018).Google Scholar
Jorden, W. and Schütte, W. (2017), Form- und Lagetoleranzen: Handbuch für Studium und Praxis, Hanser, München.Google Scholar
Jourdan, F. (2001), “Konzept zur Computerunterstützten Toleranzfestlegung mit begleitender Kostenberechnung”, 12th Symposium on Design for X, Neukirchen, 11th and 12th October 2001, pp. 7782.Google Scholar
Klein, B. (2011), Prozessorientierte statistische Tolerierung im Maschinen- und Fahrzeugbau: Mathematische Grundlagen, Toleranzverknüpfungen, Prozesskontrolle, Maßkettenberechnung, praktische Anwendungen; mit 60 Tabellen, expert verlag, Renningen.Google Scholar
Klein, B. (2018), Toleranzdesign im Maschinen- und Fahrzeugbau: Dimensionelle und geometrische Toleranzen (F+L), CAD-Tolerierung, Tolerierungsprinzipien, Maßketten und Oberflächen, De Gruyter Oldenbourg, Berlin/Boston. https://doi.org/10.1515/9783110557541Google Scholar
Klein, B. and Mannewitz, F. (1993), Statistische Tolerierung: Qualität der konstruktiven Gestaltung, Vieweg, Braunschweig/Wiesbaden.Google Scholar
Kopardekar, P. and Anand, S. (1995), “Tolerance allocation using neural networks”, The International Journal of Advanced Manufacturing Technology, Vol. 10 No. 4, pp. 269276. https://doi.org/10.1007/BF01186878Google Scholar
Nielsen, H.S. (2012), The ISO Geometrical Product Specifications Handbook: Find your way in GPS, ISO/Danish Standards, Denmark.Google Scholar
Sersch, A. and Gust, P. (2018), “Empirische Untersuchung zur Überprüfung des Anwendungsgrades der Geometrischen Produktspezifikation (GPS)”, 8. Workshop Arbeitsgemeinschaft Toleranzmanagement (ATOL), https://doi.org/10.13140/RG.2.2.34009.57440Google Scholar
Shewhart, W.A. (1938), “Application of statistical methods to manufacturing problems”, Journal of the Franklin Institute, Vol. 226 No. 2, pp. 163186. https://doi.org/10.1016/S0016-0032(38)90436-3Google Scholar
Voelcker, H.B. (1998), “The current state of affairs in dimensional tolerancing: 1997”, Integrated Manufacturing Systems, Vol. 9 No. 4, pp. 205217. https://doi.org/10.1108/09576069810217793Google Scholar
Weidemann, M. (2018a), ISO-GPS: Ausgewählte Normen – eine Einordnung. [online] Deutsche Gesellschaft für Qualität (DGQ). Available at: https://www.dgq.de/fachbeitraege/iso-gps-ausgewaehlte-normen-eine-einordnung/ (27.11.2018).Google Scholar
Weidemann, M. (2018b), ISO-GPS: Matrix-Modell und Grundsätze. [online] Deutsche Gesellschaft für Qualität (DGQ). Available at: https://www.dgq.de/fachbeitraege/iso-gps-matrix-modell-und-grundsaetze/ (27.11.2018).Google Scholar
Wittmann, M. (2001), Toleranzinformationssystem in der Produktentwicklung, Universität Saarbrücken.Google Scholar
Wittmann, M. and Scheer, A.W. (2000), FIT: featurebasiertes integriertes Toleranzinformationssystem, Universität des Saarlandes, Institut für Wirtschaftsinformatik (IWi), Saarbrücken.Google Scholar
Wu, F., Dantan, J.-Y., Etienne, A., Siadat, A. and Martin, P. (2009), “Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization”, Computers & Industrial Engineering, Vol. 64 No. 4, pp. 14021413.Google Scholar