Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T07:12:45.244Z Has data issue: false hasContentIssue false

Bio-Inspired Design for Additive Manufacturing - Case Study: Microtiter Plate

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bio-inspired design is an innovative methodology for transferring biological solutions into technical solutions, for example for the design of weight- and load-optimized components. Bio-inspired design therefore offers great potential for meeting the challenges of designing additively manufactured components, such as avoiding warpage, supporting structures and material minimisation. Nevertheless, apart from bio-inspired topology optimization tools, bio-inspired design is rarely used in industrial practice because for many companies the practical applicability up to the prototype is not obvious. The aim of this work is therefore a practical approach to the search for biological systems, analysis, abstraction and transfer of analogies. We apply bio-inspired design on the design of a microtiter plate manufactured by stereolithography, whose dimensional accuracy is impaired by warpage. Here, the venus’ flower basket, a deep-sea sponge, can serve as a model. It has a hierarchical structure of silicate needles whose elements are abstracted for bio-inspired transfer. We show and evaluate the transfer of different analogies using a prototype.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

American National Standards Institute/ SLAS Microplate Standards Advisory Committee (ANSI-SLAS 2004–2012), ANSI-SLAS 1/2004-6/2012 Microplates.Google Scholar
Feldhusen, J., Grote, K.-H., Nagarajah, A., Pahl, G., Beitz, W. and Wartzack, S. (2013), “Vorgehen bei einzelnen Schritten des Produktentstehungsprozesses”, in Feldhusen, J. and Grote, K.-H. (Eds.), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8th ed., Springer, Berlin, pp. 291409.Google Scholar
Fish, F.E. and Beneski, J.T. (2014), “Evolution and Bio-Inspired Design: Natural Limitations”, in Goel, A.K., McAdams, D.A. and Stone, R.B. (Eds.), Biologically inspired design - computational methods and tools, Springer, London, pp. 287312.Google Scholar
Formlabs, I. (2018), “Inside the Form 2: Deep Dive”, available at: https://youtu.be/8tn5zA5bNSE.Google Scholar
Gebhardt, A. and Hötter, J.-S. (2016), Additive manufacturing: 3D printing for prototyping and manufacturing, Hanser Publications, Munich, Hanser Publishers, Cincinnati.Google Scholar
Gerber, C., Goevert, K., Schweigert-Recksiek, S. and Lindemann, U. (2019), “Agile development of physical products – A case study of medical device product development”. Proceedings of the International Conference on Research into Design, Bangalore, India.Google Scholar
Gordon, W.J.J. (1961), Synectics: The Development of Creative Capacity, Harper & Row, New York.Google Scholar
Gramann, J. (2004), “Problemmodelle und Bionik als Methode”, Doctoral thesis, Institute of Product Development, Munich, Technical University, Munich, 2004.Google Scholar
Farzaneh, H., Angele, F. and Zimmermann, M. (2018), “Bionik – Potenziale für die Konstruktion additiv gefertigter Bauteile”, in Proceedings of the Workshop “Design for Additive Manufacturing”, Hanover, Germany, 16/09/2018.Google Scholar
Hashemi Farzaneh, H. and Lindemann, U. (2018), A Practical Guide to Bio-inspired Design, 1st edition 2019, Springer Berlin; Springer Vieweg, Berlin.Google Scholar
Helms, M.K. (2016), “Biologische Publikationen als Ideengeber für das Lösen technischer Probleme in der Bionik”, Dissertation, Institute of Product Development, Technical University of Munich, Munich, 2016.Google Scholar
Hill, B. (1997), Innovationsquelle Natur: Naturorientierte Innovationsstrategie für Entwickler, Konstrukteure und Designer, Shaker, Aachen.Google Scholar
Klahn, C., Meboldt, M., Fontana, F.F., Leutenecker-Twelsiek, B. and Jansen, J. (Eds.) (2018), Entwicklung und Konstruktion für die Additive Fertigung: Grundlagen und Methoden für den Einsatz in industriellen Endkundenprodukten, 1. Auflage, Vogel Business Media, Würzburg.Google Scholar
Lindemann, U. (2009), Methodische Entwicklung technischer Produkte, 3rd, Springer, Berlin.Google Scholar
Löffler, S. (2009), Anwenden bionischer Konstruktionsprinzipe in der Produktentwicklung, Logos Verlag, Berlin.Google Scholar
Milton, R.C. (1964), “An Extended Table of Critical Values for the Mann-Whitney (Wilcoxon) Two-Sample Statistic”, Journal of the American Statistical Association, Vol. 59 No. 307, pp. 925934.Google Scholar
Nachtigall, W. (2002), Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler, 2. Auflage, Springer Berlin Heidelberg, Berlin, Heidelberg.Google Scholar
Sartori, J., Pal, U. and Chakrabarti, A. (2010), “A methodology for supporting “transfer” in biomimetic design”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 24, pp. 483505.Google Scholar
Schmutzler, C., Teufelhardt, S., Reinhart, G. and Zäh, M.F. (2016), “Neue Produktionstechnologien am Beispiel der additiven Verfahren”, in Lindemann, U. (Ed.), Handbuch Produktentwicklung, Hanser, München, pp. 953977.Google Scholar
Association of German Engineers (2012), Biomimetics: Conception and strategy - Differences between biomimetic and conventional methods/products (VDI 6220), Beuth, Berlin.Google Scholar
Vogel, S. and Ferrari, A.D. (2013), Comparative biomechanics: Life's physical world, 2. ed., Princeton Univ. Press, Princeton, NJ.Google Scholar
Weaver, J.C., Aizenberg, J., Fantner, G.E., Kisailus, D., Woesz, A., Allen, P., Fields, K., Porter, M.J., Zok, F.W., Hansma, P.K., Fratzl, P. and Morse, D.E. (2007), “Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum”, Journal of structural biology, Vol. 158 No. 1, pp. 93106.Google Scholar
Wiedemann, B. (1997), “Verzugsursachen stereolithographisch hergestellter photopolymerer Bauteile und die Auswirkungen der Prozeßführung auf ihr Eigenschaftsprofil”, Dissertation, Universität Stuttgart, Stuttgart, 1997.Google Scholar