No CrossRef data available.
Article contents
A Knowledge Based Approach to Support the Conceptual Design of ETO Products
Published online by Cambridge University Press: 26 July 2019
Abstract
The ever-increasing competitiveness, due to the market globalization, has forced the industries to modify their design and production strategies. A key point is the development of products that fulfil the individual customer needs as close as possible. ETO companies manufacture new products according to the customer technical requirements given in the request for proposal.
Computational Design Synthesis is the research area focused on activities to automate the design phase in the production of products such ETO structures. In this context, Knowledge Based Engineering applications are usually applied to automate design routines and to implement a multidisciplinary product design. Knowledge should be elicited and formalized, so that it can allow the past cases retrieval and the connection between customer specifications and the product configuration tasks. This paper proposes an approach for the rapid definition of the product structure related to a ETO product, including the early cost evaluation in configurations. The research scope aims at defining a framework to support the knowledge repository, which is the Knowledge Based used to design new products and estimate their costs.
- Type
- Article
- Information
- Proceedings of the Design Society: International Conference on Engineering Design , Volume 1 , Issue 1 , July 2019 , pp. 2417 - 2426
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s) 2019