Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T05:32:58.916Z Has data issue: false hasContentIssue false

A Straightforward Approach to the Derivation of Topologies

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The design of topologically optimized structures is straightforward, although the main problem is really to derive the correct structure in each instance. During the development of structures for additive manufacturing in particular, saving weight is crucial because weight is proportional to cost.

In this contribution firstly, different approaches to topological optimization are presented and discussed. While computer-assisted tools provide high accuracy and demand defined conditions, approaches utilizing a pen and paper can be conducted relatively quickly, although these only provide little guidance.

Secondly, a new approach is presented which is advantageous with regard to effort and affordability, yet which maintains an accuracy of results. To support the designer, an artificial neural network is trained to adapt suitable Michell structures within a given design area. These structures depict optimal paths to conduct the loads through a component and provide guidance in designing an appropriate topology.

Evaluation has demonstrated that this new approach is capable of supporting designers in achieving lightweight structures.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

acatech – Deutsche Akademie der Technikwissenschaften (2016), Additive Fertigung, München.Google Scholar
Aggarwal, C.C. (2018), Neural Networks and Deep Learning: A Textbook, Springer International Publishing, Cham.Google Scholar
Bendsøe, M.P. and Sigmund, O. (2004), Topology Optimization: Theory, Methods, and Applications, Engineering Online Library, 2nd ed., corr. printing, Springer, Berlin.Google Scholar
Chan (1960), The design of Michell Optimum Structures: Reports and Memoranda No. 33o3, Vol. 190, Bedford.Google Scholar
Dylla, N. (1991), Denk- und Handlungsabläufe beim Konstruieren, Zugl.: München, Techn. Univ., Diss., 1990, Konstruktionstechnik München, Vol. 5, Hanser, München.Google Scholar
GE (2018), “GE jet engine bracket challenge”, available at: https://grabcad.com/challen-ges/ge-jet-engine-bracket-challenge.Google Scholar
Gebhardt, A. (2016), Generative Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping - Tooling - Produktion, 5., neu bearbeitete und erweiterte Auflage, Hanser, München.Google Scholar
Harzheim, L. (2014), Strukturoptimierung: Grundlagen und Anwendungen, 2nd ed., Verlag Europa-Lehrmittel, s.l.Google Scholar
Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A.A. (2016), “Image-to-image translation with conditional adversarial networks”.Google Scholar
Keller, A. and Binz, H. (2009), “Requirements on engineering design methodologies”, in Bergendahl, M.N., Grimheden, M., Leifer, L., Skogstad, P. and Badke-Schaub, P. (Eds.), Proceedings of the International Conference on Engineering Design 2009, Design Theory and Research Methodology, Stanford, CA/USA, 24.–27.08.2009, Design Society, Glasgow, pp. 203214.Google Scholar
Mattheck, C. (2010), Denkwerkzeuge nach der Natur, 1st ed., Karlsruher Inst. für Technologie Campus Nord, Karlsruhe.Google Scholar
Michell, A.G.M. (1904), “LVIII. The limits of economy of material in frame-structures”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 8 No. 47, pp. 589597.Google Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung ; Methoden und Anwendung, 7. Aufl., Springer, Berlin, Heidelberg.Google Scholar
Posner, B., Binz, H. and Roth, D. (2014), “Supporting the development of lightweight design structures with simple methods in early stages”, DS 81: Proceedings of NordDesign 2014, Espoo, Finland, 27–29th August 2014, pp. 795804.Google Scholar
Posner, B., Keller, A., Binz, H. and Roth, D. (2012), “Anforderungen an eine methode zum leichtbaugerechten konstruieren”.Google Scholar
Radford, A., Metz, L. and Chintala, S. (2015), Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.Google Scholar
Sauer, A. (2008), “Untersuchungen zur Vereinfachung biomechanisch inspirierter Strukturoptimierung”, Ph.D. thesis, 2008.Google Scholar
Sigmund, O., Aage, N. and Andreassen, E. (2016), “On the (non-)optimality of Michell structures”, Structural and Multidisciplinary Optimization, Vol. 54 No. 2, pp. 361373.Google Scholar
Süß, M., Richter, R., Hofmann, D., Schöne, C. and Stelzer, R. (2018), “eines Luftfahrtbauteils Impact of optimization target definition for maximizing the utilization of weight reduction to enhance an aircraft bracket”, in Kynast, M. (Ed.), Rapid.Tech + FabCon 3.D: International Trade Show & Conference for Additive Manufacturing, Erfurth, 05.–07.06.2018, Carl Hanser Verlag, München, pp. 6580.Google Scholar
Weiss, F., Ahlgrimm, L., Binz, H. and Roth, D. (2017), “Prozess zur computergestützten Anpassung AM-gerechter Lösungsprinzipien an produktspezifische Randbedingungen”, in Stuttgarter Symposium für Produktentwicklung SSP 2017 Stuttgart, 29. Juni 2017, Wissenschaftliche Konferenz, Universität Stuttgart.Google Scholar
Wiedemann, J. (2007), Leichtbau: Elemente und Konstruktion, Klassiker der Technik, 3. Auflage, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.Google Scholar
Wohlers (2017), Wohlers Report 2017: 3d Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, Colorado.Google Scholar