Article contents
COHEN–MACAULAY PROPERTIES OF THOM–BOARDMAN STRATA I: MORIN'S IDEAL
Published online by Cambridge University Press: 01 March 2000
Abstract
Thom--Boardman strata $\Sigma^I$ are fundamental tools in studying singularities of maps. The Zariski closures of the strata $\Sigma^I$ are components of the set of zeros of the ideals $\Delta^I$ defined by B. Morin using iterated jacobian extensions in his paper `Calcul jacobien' ({\em Ann. Sci. \'Ecole Norm. Sup.} 8 (1975) 1--98). In this paper, we consider the question of when the Morin ideals $\Delta^I$ define Cohen--Macaulay spaces. We determine all $I=(i_1,...,i_k)$ such that $\Delta^I$ defines a Cohen--Macaulay space alongthe $\Sigma^{i_1}$ stratum. 1991 Mathematics Subject Classification: 13D25, 14B05, 14M12, 58C25.
Keywords
- Type
- Research Article
- Information
- Copyright
- 2000 London Mathematical Society
- 1
- Cited by