Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:39:27.211Z Has data issue: false hasContentIssue false

AN INDEX THEOREM FOR NON-PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS

Published online by Cambridge University Press:  23 August 2001

PAOLO PICCIONE
Affiliation:
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281 — CEP 05315-970, São Paulo SP, Brazilpiccione@ime.usp.br
DANIEL V. TAUSK
Affiliation:
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281 — CEP 05315-970, São Paulo SP, Braziltausk@ime.usp.br
Get access

Abstract

We consider a Hamiltonian setup $(\mathcal M,\omega,H,\mathfrak L,\Gamma,\mathcal P)$, where $(\mathcal M,\omega)$ is a symplectic manifold, $\mathfrak L$ is a distribution of Lagrangian subspaces in $\mathcal M$, $\mathcal P$ is a Lagrangian submanifold of $\mathcal M$, $H$ is a smooth time-dependent Hamiltonian function on $\mathcal M$, and $\Gamma:[a,b]\to\mathcal M$ is an integral curve of the Hamiltonian flow $\vec H$ starting at $\mathcal P$. We do not require any convexity property of the Hamiltonian function $H$. Under the assumption that $\Gamma(b)$ is not $\mathcal P$-focal, we introduce the Maslov index $\mathrm i_{\mathrm{maslov}}(\Gamma)$ of $\Gamma$ given in terms of the first relative homology group of the Lagrangian Grassmannian; under generic circumstances $\mathrm i_{\mathrm{maslov}}(\Gamma)$ is computed as a sort of algebraic count of the $\mathcal P$-focal points along $\Gamma$. We prove the following version of the Index Theorem: under suitable hypotheses, the Morse index of the Lagrangian action functional restricted to suitable variations of $\Gamma$ is equal to the sum of $\mathrm i_{\mathrm{maslov}}(\Gamma)$ and a convexity term of the Hamiltonian $H$ relative to the submanifold $\mathcal P$. When the result is applied to the case of the cotangent bundle $\mathcal M=TM^*$ of a semi-Riemannian manifold $(M,g)$ and to the geodesic Hamiltonian $H(q,p)=\frac12 g^{-1}(p,p)$, we obtain a semi-Riemannian version of the celebrated Morse Index Theorem for geodesics with variable endpoints in Riemannian geometry.

2000 Mathematical Subject Classification: 37J05, 53C22, 53C50, 53D12, 70H05.

Type
Research Article
Copyright
2001 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)