The overall aim of precision nutrition is to replace the ‘one size fits all’ approach to dietary advice with recommendations that are more specific to the individual in order to improve the prevention or management of chronic disease. Interest in precision nutrition has grown with advancements in technologies such as genomics, proteomics, metabolomics and measurement of the gut microbiome. Precision nutrition initiatives have three major applications in precision medicine. First, they aim to provide more ‘precision’ dietary assessments through artificial intelligence, wearable devices or by employing omic technologies to characterise diet more precisely. Secondly, precision nutrition allows us to understand the underlying mechanisms of how diet influences disease risk and identify individuals who are more susceptible to disease due to gene–diet or microbiota–diet interactions. Third, precision nutrition can be used for ‘personalised nutrition’ advice where machine-learning algorithms can integrate data from omic profiles with other personal and clinical measures to improve disease risk. Proteomics and metabolomics especially provide the ability to discover new biomarkers of food or nutrient intake, proteomic or metabolomic signatures of diet and disease, and discover potential mechanisms of diet–disease interactions. Although there are several challenges that must be overcome to improve the reproducibility, cost-effectiveness and efficacy of these approaches, precision nutrition methodologies have great potential for nutrition research and clinical application.