Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T18:54:07.642Z Has data issue: false hasContentIssue false

The Effects of Fire on Archaeological Soils and Sediments: Temperature and Colour Relationships

Published online by Cambridge University Press:  18 February 2014

N. Linford
Affiliation:
Ancient Monuments Laboratory, English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4

Abstract

Although fire is a fundamental building block of interpretation, details of its effect on archaeological substrates are still poorly understood. The key questions, from an interpretative point of view, are the level of heating produced in the soil underneath different fires and the degree of reddening preserved in the final stratigraphy. This paper explores these questions by examination of previous studies and through a series of instrumented experimental fires. We conclude that, although there is some variation, temperatures beneath most surface-built fires remain below 500° C and reddening of the soil happens only rarely. These two generalisations are, however, linked in a complex way which is not fully clarified. Some sediments redden dramatically at temperatures commonly found under the experimental fires and in the literature on soil heating, while others fail to redden even at significantly higher temperatures. These ‘anomalies’ could relate to either organic matter content or chemical variations affecting the progress of the iron oxide transformations that lead to soil reddening.

Résumé

Bien que le feu soit un pilier fondamental de l'interprétation archéologique, on ne saisit encore qu'insuffisamment les détails de son effet sur les sous-couches archéologiques. Les questions clés, du point de vue de l'interprétation, sont le degré de chaleur atteint par le sol sous divers feux et le degré de rougeoiement préservé dans la statigraphie finale. Cette étude explore ces questions en examinant les études précédentes et à la lueur d'une série d'incendies expérimentaux mesurés. Nous en concluons que, bien qu'il y ait certaines variations, la température sous la plupart des incendies allumés en surface ne dépasse pas les 500°C et il est rare que le sol rougisse. Ces deux généralisations sont toutefois liées d'une manière complexe qui n'a pas été totalement clarifiée. Certains sédiments rougissent dramatiquement à des températures qu'on trouve couramment sous des feux expérimentaux et dans la littérature sur l'échauffement des sols, tandis que d'autres ne présentent aucun signe de rougoiement même à des températures nettement plus élevées. Il se pourrait que ces ‘anomalies’ soient liées soit au contenu de la matière organique, soit à des modifications chimiques qui affectent le processus de transformation de l'oxide de fer responsable de la coloration rouge du sol.

Zusammenfassung

Obwohl Feuer ein fundamentaler Baustein der Interpretation ist, versteht man die Details seiner Auswirkung auf die archäologischen Substrate immer noch unzureichend. Mit einer interpretativen Perspektive betreffen die Kernfragen zum einen die Höhe der Hitze, die im Boden unter den verschiedenen Feuern produziert wird, zum anderen den Grad der Rötung, die sich in der Stratigraphie zeigt. Der Artikel untersucht diese Fragen durch eine Analyse früherer Studien und durch eine Reihe instrumentalisierter, experimentieller Feuer. Wir fassen zusammen, daß obwohl es einige Variationen gibt, Temperaturen unter den meisten oberflächlichen Feuern unter 500° C bleibt, und die Rötung des Bodens nur selten eintritt. Diese zwei Verallgemeinerungen sind jedoch in einer komplexen Weise miteinander verbunden, die noch nicht vollkommen geklärt ist. Einige Sedimente röten sich sehr stark bei einer Temperatur, die normalerweise unter experimentiellen Feuern und in der Literatur zu Bodenerhitzung zu finden ist, während andere sogar bei bedeutend höheren Temperaturen nicht röten. Diese „Anomalitäten‟ könnten entweder von organischem Inhalt der Materie oder von chemikalischen Variationen herrühren, die den Fortschritt der Eisenoxidierung beeinflussen, die schließlich zur Bodenrötung führt.

Resúmen

Aunque el fuego es un bloque de construcción fundamental en la interpretación, se conocen aún muy pobremente los detalles de su efecto en los substratos arqueológicos. Las preguntas clave desde el punto de vista interpretativo, son el nivel de calor producido en el suelo bajo distintos tipos de fuegos y el grado de enrojecimiento preservado en la estratigrafía final. Este trabajo explora estas preguntas a través del examen de estudios previos y a través de una serie de fuegos experimentales controlados. Concluimos que, aunque hay algo de variación, las temperaturas bajo la mayoría de los fuegos prendidos en la superficie se mantiene bajo los 500°C y que el enrojecimiento del suelo ocurre sólo raramente. Estas dos generalizaciones están, sin embargo, complejamente unidas de modo que no ha sido del todo clarificado. Algunos sedimentos enrojecen dramaticamente a las temperaturas normalmente alcanzadas bajo fuegos experimentales y en la literatura sobre calentamiento de suelos, mientras que otros no enrojecen siquiera a temperaturas significativamente superiores. Estas “anomalias” pueden estar relacionadas bien con el contenido de materia orgánica o con variaciones químicas que afectan el proceso de transformación del óxido de hierro que conduce al enrojecimiento de los suelos.

Type
Shorter Contribution
Copyright
Copyright © American Political Science Association 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Barbetti, M., Taborin, Y., Schmider, B. & Flude, K. 1980. Archaeomagnetic results from late Pleistocene hearths at Etiolles and Marsannay, France. Archaeometry 22, 2546CrossRefGoogle Scholar
Beadle, N.C.W. 1940. Soil temperatures during forest fires and their effect in the survival of vegetation. Journal of Ecology 28, 180–92CrossRefGoogle Scholar
Bellomo, R.V. 1990. Methods for Documenting Unequivocal Evidence for Humanly-controlled Fire at early Pleistocene Archaeological Sites in East Africa: the Role of Actualistic Studies. PhD thesis. University of Wisconsin-Milwaukee.Google Scholar
Bellomo, R.V. 1993. A methodological approach for identifying archaeological evidence of fire resulting from human activity. Journal of Archaeological Science 5, 525–53CrossRefGoogle Scholar
Bellomo, R.V. & Harris, J.W.K. 1990. Preliminary reports of actualistic studies of fire within Virunga National Park, Zaire: towards an understanding of archaeological occurrences. In Boaz, N.T. (ed.), Evolution of Environments and Hominidae in the African Western Rift Valley, 317–38. Martinsville, VA: Virginia Museum of Natural History, Memoir 1Google Scholar
Bennett, J.L. 1999. Thermal alteration of burned bone. Journal of Archaeological Science 26, 18CrossRefGoogle Scholar
Bentley, J.R. & Fenner, R.L. 1958. Soil temperatures during burning related to postfire seedbeds on woodland range. Journal of Forestry 56, 737–44Google Scholar
Bradstock, R.A. & Auld, T.D. 1995. Soil temperatures during experimental bushfires in relation to fire intensity: consequence for legume germination and fire management in south-eastern Australia. Journal of Applied Ecology 32, 7684CrossRefGoogle Scholar
Brain, C.K. & Sillen, A. 1988. Evidence from the Swartkrans cave for the earliest use of fire. Nature 336, 464–6CrossRefGoogle Scholar
Campbell, G.S., Jungbauer, J.D., Bidlake, W.R. & Hungerford, R.D. 1994. Predicting the effect of temperature on soil thermal conductivity. Soil Science 158, 307–13CrossRefGoogle Scholar
Campbell, G.S., Jungbauer, J.D., Bristow, K.L. & Hungerford, R.D. 1995. Soil temperature and water content beneath a surface fire. Soil Science 159, 363–74CrossRefGoogle Scholar
Clark, J.D. & Harris, J.W.K. 1985. Fire and its roles in early hominid lifeways. African Archaeological Review 3, 327CrossRefGoogle Scholar
Cornell, R.M. & Schwertmann, U. 1996. The Iron Oxides. Weinheim: VCHGoogle Scholar
Cromer, R.N. & Vines, R.G. 1966. Soil temperatures under a burning windrow. Australian Forest Research 2, 29Google Scholar
Debano, L.F., Dunn, P.H. & Conrad, C.E. 1977. Fire's Effect on Physical and Chemical Properties of Chaparral Soils. United States Department of Agriculture Forest Service General Technical Report WO-3, 6574Google Scholar
DeBano, L.F. 1991. The Effect of Fire on Soil Properties. United States Department of Agriculture Forest Service General Technical Report INT-280, 151–6Google Scholar
Eisely, L.C. 1954. Man the fire maker. Scientific American 191, 52–7CrossRefGoogle Scholar
Fitzpatrick, R.W. 1988. Iron compounds as indicators of pedogenetic process; examples from the southern hemisphere. In Stucki, J.W.Goodman, B.A &, U. Schwertmann (eds), Iron in Soils and Clay Minerals, 351–96. Dordrecht: Reidel; Nato ASI Series 217CrossRefGoogle Scholar
Floyd, A.G. 1966. Effect of fire upon weed seeds in the wet sclerophyll forests of northern N.S.W. Australian Journal of Botany 14, 243CrossRefGoogle Scholar
Frandsen, W.H. & Ryan, K.C. 1986. Soil moisture reduces belowground heat flux and soil temperatures under a burning fuel pile. Canadian Journal of Forest Research 16, 244–8CrossRefGoogle Scholar
Gowlett, J.A.J., Harris, J.W.K., Walton, D. & Wood, B.A. 1981. Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature 294, 125–9CrossRefGoogle ScholarPubMed
Heyward, F. 1938. Soil temperatures during forest fires in the longleaf pine region. Journal of Forestry 36, 478–91Google Scholar
Humphreys, F.R. & Craig, F.H. 1981. Effects of fire on soil chemical, structural and hydrological properties. In Gill, A.M.Groves, R.H. & Noble, I.R. (eds), Fire and the Australian Biota, 177200. Canberra: Australian Academy of ScienceGoogle Scholar
Humphreys, F.R. & Lambert, M.J. 1965. Soil temperature profiles under slash and log fires of various intensities. Australian Forest Research 1, 23–9Google Scholar
James, S.R. 1989. Hominid use of fire in the Lower and Middle Pleistocene: a review of the evidence. Current Anthropology 30, 126CrossRefGoogle Scholar
Loon, A.P. van 1969. Investigations into the effects of prescribed burning on young even-aged blackbutt. Forestry Commission New South Wales Research Note 23, 649Google Scholar
Marel, H.W. van der. 1951. Gamma ferric oxide in sediments. Journal of Sedimentary Petrology 21, 1221Google Scholar
Marshall, A. 1998. Visualising burnt areas: patterns of magnetic susceptibility at Guiting Power 1 round barrow (Glos., UK). Archaeological Prospection 5, 591773.0.CO;2-D>CrossRefGoogle Scholar
McKinley, J. 1997. Bronze Age ‘barrows’ and funerary rites and rituals of cremation. Proceedings of the Prehistoric Society 63, 129–45CrossRefGoogle Scholar
Mellars, P. 1976. Fire ecology, animal populations and man: a study of some ecological relationships in prehistory. Proceedings of the Prehistoric Society 42, 1545CrossRefGoogle Scholar
Miller, R.B., Stout, J.D. & Lee, K.E. 1955. Biological and chemical changes following scrub burning on a New Zealand hill soil. New Zealand Journal of Science and Technology 37, 290313Google Scholar
Norton, B.E. & McGarity, J.W. 1966. The effect of burning of native pasture on soil temperature in northern New South Wales. Journal of the British Grassland Society 20, 101–5CrossRefGoogle Scholar
Oakley, K.P. 1955. Fire as a Palaeolithic tool and weapon. Proceedings of the Prehistoric Society 21, 3648CrossRefGoogle Scholar
Roberts, W.B. 1965. Soil temperatures under a pile of burning logs. Australian Forest Research 1, 21–5Google Scholar
Schwertmann, U. & Fechter, H. 1984. The influence of aluminium on iron oxides XI. Aluminium-substituted maghemite in soils and its formation. Soil Science Society of America Journal 48, 1462–3CrossRefGoogle Scholar
Schwertmann, U. 1993. Relations between iron oxides, soil colour and soil formation. In Bigham, J.M. & Ciolcosz, E.J. (eds), Soil Colour, 5169. Madison: Soil Science Society of America Special Publication 31Google Scholar
Scotter, D.R. 1970. Soil temperatures under grass fires, Australian Journal of Soil Research, 8, 273–9CrossRefGoogle Scholar
Simmons, I.G., Dimbleby, G.W & Grigson, C. 1981. The Mesolithic. In Simmons, I.G. & Tooley, M.J. (eds), The environment in British Prehistory, 82124. London: DuckworthGoogle Scholar
Tothill, J.C. & Shaw, N.H. 1968. Temperatures under fires in bunch spear grass pastures in south-east Queensland. Journal Australian Institute of Agricultural Science 34, 94–7Google Scholar
Uggla, E. 1957. Soil and air temperature during burning of clear-felled areas and the effect of fire on vegetation and humus. Norrlands Skogsvdrdsforbunds Tidskrift 4, 443500Google Scholar
Ulery, A.L. & Graham, R.C. 1993. Forest fire effects on soil colour and texture. Soil Science Society of America Journal 57, 135–40CrossRefGoogle Scholar
Vines, R.G. 1968. Heat transfer through bark and the resistance of trees to fire. Australian Journal of Botany 16, 499514CrossRefGoogle Scholar
Weiner, S., Xu, Q., Goldberg, P., Liu, J. & Bar-Yosef, O. 1998. Evidence for the use of fire at Zhoukoudian, China. Science 281, 251–3CrossRefGoogle ScholarPubMed
Wells, C.G., Campbell, R.E., DeBano, L.F., Lewis, C.E., Fredriksen, R.L., Franklin, E.C., Froelich, R.C. & Dunn, P.H. 1979. The effects of fire on soil; a state-of-knowledge review. National fire effects workshop, Denver, Colorado, April 10–14, 1978. United States Forest Service General Technical Report WO-7Google Scholar
Wendorf, M. 1982. The fire areas of Santa Rosa Island: an interpretation. North American Archaeologist 3, 173–80CrossRefGoogle Scholar
Whittaker, E. 1961. Temperatures in heath fires. Journal of Ecology 49, 709–15CrossRefGoogle Scholar
Wright, H.A. & Bailey, A.W. 1982. Temperature and heat effects. In Wright, H.A. & Bailey, A.W., Fire and Ecology: United States and Southern Canada, 823. New York: J. Wiley & SonsGoogle Scholar