Published online by Cambridge University Press: 14 February 2012
Using the constitutive relationship for a Maxwell body, as an example of a viscoelastic fluid, the equations of motion are derived in the Fourier wavenumber-time domain, and specialised to the case of isotropic turbulence. It is shown that, for grid-generated turbulence, the model predicts increased spectral intensity levels, reduced decay rates and steepening of the spectrum in wavenumber, relative to the Newtonian case. These forms of behaviour have been observed in dilute solutions of drag reducing polymers. The key factor in this is found to be the presence of an ‘elastic’ non-linear term in the equations of motion: this term reverses the normal direction of turbulent energy transfer in wavenumber.