Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T17:06:49.755Z Has data issue: false hasContentIssue false

24.—Eigenvalue and Eigenvector Solutions of a Wave System in a Non-Linear Dissipative Medium*

Published online by Cambridge University Press:  14 February 2012

M. A. S. Ross
Affiliation:
Fluid Mechanics Unit, Department of Physics, University of Edinburgh
D. F. Corner
Affiliation:
Fluid Mechanics Unit, Department of Physics, University of Edinburgh

Synopsis

This paper gives an account of some numerical methods which have been applied to solve the equations of second order stability theory in the flat plate boundary layer.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Barry, M. D. J., 1970. Ph.D. thesis, Edinb. Univ. (Unpublished).Google Scholar
Fox, L., 1960. In Boundary Problems in Differential Equations (Ed. Langer, R. E.). Univ. Wisconsin Press.Google Scholar
Jones, C. W. and Watson, E. J., 1963. In Laminar Boundary Layers. Oxford University Press.Google Scholar
Jordinson, R., 1968. Ph.D. thesis, Edinb. Univ. (Unpublished).Google Scholar
Meksyn, D. and Stuart, J. T., 1951. Proc. Roy. Soc., A208.Google Scholar
Numerov, B. V., 1924. Mon. Not. Roy. Astr. Soc., 84, 592.CrossRefGoogle Scholar
Osborne, M. R., 1967. SIAM J. Appl. Math., 15, 539.CrossRefGoogle Scholar
Stuart, J. T., 1958. J. Fluid Mech., 4, 1.CrossRefGoogle Scholar
Stuart, J. T., 1960. J. Fluid Mech., 9, 353.CrossRefGoogle Scholar
Watson, J., 1960. J. Fluid Mech., 9, 371.CrossRefGoogle Scholar
Wazzan, A. R., Okamura, T. T. and Smith, A. M. O., 1968. Douglas Aircraft Co. Rep. DAC-67086.Google Scholar