Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:35:22.171Z Has data issue: false hasContentIssue false

3.—A Criterion for the Existence of Solutions of Non-linear Elliptic Boundary Value Problems

Published online by Cambridge University Press:  14 February 2012

Johanna Deuel
Affiliation:
Swiss Institute of Technology (Department of Mathematics), Zurich
Peter Hess
Affiliation:
Mathematics Institute, University of Zurich

Synopsis

By a new method it is proved that a non-linear elliptic boundary value problem of rather general type admits a weak solution lying between a given weak lower solution ϕ and a given weak upper solution ψ≧ϕ

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. On the existence of positive solutions of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21 (1971), 125146.CrossRefGoogle Scholar
2Deuel, J. et Hess, P.. Inéquations variationnelles elliptiques non coercives. C.R. Acad. Sci. Paris Ser. A 279 (1974), 719722.Google Scholar
3Hess, P.. On the solvability of nonlinear elliptic boundary value problems. Indiana Univ. Math. J., to appear.Google Scholar
4Krasnoselskii, M. A.. Topological methods in the theory of nonlinear integral equations (New York: Macmillan, 1964).Google Scholar
5Lions, J.-L.. Quelques méthodes de résolution des problèmes aux limites non linéaires (Paris: Dunod, Gauthier-Villars, 1969).Google Scholar
6Martin, R. H.. Nonlinear perturbations of uncoupled systems of elliptic operators. Math. Ann. 211 (1974), 155169.Google Scholar
7Puel, J.-P.. Sur des problèmes quasilinéaires elliptiques etparaboliques d’ordre 2. C.R. Acad. Sci. Paris Ser. A 275 (1972), 179182.Google Scholar
8Stampacchia, G.. Equations elliptiques du second ordre à coefficients discontinus (Montreal: Les Presses de l'Université,1966).Google Scholar
9Zaanen, A. C.. Integration (Amsterdam: North-Holland, 1967).Google Scholar