Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T22:52:28.987Z Has data issue: false hasContentIssue false

Each univariate complex polynomial has a ‘big’ factor

Published online by Cambridge University Press:  14 November 2011

Ph. Glesser
Affiliation:
U.F.R. de mathématique et d'informatique, Université Louis Pasteur, 7 rue René Descartes, F-67084 Strasbourg Cedex, France
M. Mignotte
Affiliation:
U.F.R. de mathématique et d'informatique, Université Louis Pasteur, 7 rue René Descartes, F-67084 Strasbourg Cedex, France
M. Petkovic
Affiliation:
U.F.R. de mathématique et d'informatique, Université Louis Pasteur, 7 rue René Descartes, F-67084 Strasbourg Cedex, France

Abstract

We consider the following problem: Let P be a monic polynomial of degree n with complex coefficients. What can be the maximum ‘size’ of a monic divisor Q of P? Here the size of a polynomial R is the maximum ||R|| of the moduli of its values on the unit circle. In 1991, B. Beauzamy proved that there exists a divisor Q with ||Q|| ≧ e∈n−1, ∈ = 0.0019, when all the roots of P belong to the unit circle. Using a very recent result of D. Boyd, we obtain a general result which, in the same case, gives ||Q||≧βn; here β = 1.38135 … is optimal.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Beauzamy, B.. Polynomials with complex coefficients: size of factors, repartition of the zeros. Appl. Anal. 41 (1991), 193201Google Scholar
2Beauzamy, B., Trevisan, V. and Wang, P.. Polynomial factorization: sharp bounds, efficient algorithms. J. Symb. Comp. 15 (1993), 393413.Google Scholar
3Boyd, D. W.. Two sharp inequalities for the norm of a factor of a polynomial. Mathematica (to appear).Google Scholar
4Erd, P.ös and Tur, P.àn. On the distribution of the roots of polynomials. Ann. Math. 51 (1950), 105119.Google Scholar
5Ganelius, T.. Sequences of analytic functions and their zeros. Ark. Math. 3 (19541958), 150.Google Scholar