Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T23:50:42.275Z Has data issue: false hasContentIssue false

Inverse nodal problems on quantum tree graphs

Published online by Cambridge University Press:  16 December 2021

Chuan-Fu Yang
Affiliation:
Department of Applied Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People's Republic of China (chuanfuyang@njust.edu.cn, daiquanliu@njust.edu.cn)
Dai-Quan Liu
Affiliation:
Department of Applied Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People's Republic of China (chuanfuyang@njust.edu.cn, daiquanliu@njust.edu.cn)

Abstract

We consider inverse nodal problems for the Sturm–Liouville operators on the tree graphs. Can only dense nodes distinguish the tree graphs? In this paper it is shown that the data of dense-nodes uniquely determines the potential (up to a constant) on the tree graphs. This provides interesting results for an open question implied in the paper.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avdonin, S., Kurasov, P. and Nowaczyk, M.. Inverse problems for quantum trees II: recovering matching conditions for star graphs. Inverse Probl. Imaging 4 (2010), 579598.10.3934/ipi.2010.4.579CrossRefGoogle Scholar
Avdonin, S. and Kurasov, P.. Inverse problems for quantum trees. Inverse Probl. Imaging 2 (2008), 121.10.3934/ipi.2008.2.1CrossRefGoogle Scholar
Buterin, S. and Shieh, C. T.. Inverse nodal problem for differential pencils. Appl. Math. Lett. 22 (2009), 12401247.10.1016/j.aml.2009.01.037CrossRefGoogle Scholar
Carlson, R. and Pivovarchik, V.. Spectral asymptotics for quantum graphs with equal edge lengths. J. Phys. A 41 (2008), 145202.10.1088/1751-8113/41/14/145202CrossRefGoogle Scholar
Carlson, R. and Pivovarchik, V.. Ambarzumian's theorem for trees. Electron. J. Differ. Equ. 2007 (2007), 19.Google Scholar
Cheng, Y. H.. Reconstruction of the Sturm-Liouville operator on a p-star graphs with nodal data. Rocky Mt. J. Math. 42 (2012), 14311446.10.1216/RMJ-2012-42-5-1431CrossRefGoogle Scholar
Currie, S.. Spectral theory of differential operators on graphs. Doctoral dissertation, under the supervision of Prof. B. A. Watson (School of Mathematics, University of the Witwatersrand, 2005).10.1016/j.cam.2004.11.038CrossRefGoogle Scholar
Currie, S. and Watson, B. A.. Inverse nodal problems for Sturm-Liouville equations on graphs. Inverse Probl. 23 (2007), 20292040.10.1088/0266-5611/23/5/013CrossRefGoogle Scholar
Eckhardt, J.. An inverse spectral problem for a star graph of Krein strings. J. Reine Angew. Math. 715 (2016), 189206.10.1515/crelle-2014-0003CrossRefGoogle Scholar
Freiling, G. and Yurko, V. A.. Inverse Sturm-Liouville problems and their applications (Huntington, NY: Nova Science Publishers, 2001).Google Scholar
Guo, Y. X. and Wei, G. S.. Inverse problems: dense nodal subset on an interior subinterval. J. Differ. Equ. 255 (2013), 20022017.10.1016/j.jde.2013.06.006CrossRefGoogle Scholar
Gutkin, B. and Smilansky, U.. Can one hear the shape of a graph?. J. Phys. A 34 (2001), 60616068.10.1088/0305-4470/34/31/301CrossRefGoogle Scholar
Kiss, M.. Spectral determinants and Ambarzumian type theorem on graphs. Integr. Equ. Oper. Theory 92 (2020), 24.10.1007/s00020-020-02579-4CrossRefGoogle Scholar
Kottos, T. and Smilansky, U.. Quantum chaos on graphs. Phys. Rev. Lett. 79 (1997), 47944797.10.1103/PhysRevLett.79.4794CrossRefGoogle Scholar
Kuchment, P.. Quantum graphs: I. Some basic structures. Waves Random Media 14 (2004), S107S128.10.1088/0959-7174/14/1/014CrossRefGoogle Scholar
Kuchment, P. and Post, O.. On the spectra of carbon nano-structures. Commun. Math. Phys. 275 (2007), 805826.10.1007/s00220-007-0316-1CrossRefGoogle Scholar
Kurasov, P. and Nowaczyk, M.. Inverse spectral problem for quantum graphs. J. Phys. A 38 (2005), 49014915.10.1088/0305-4470/38/22/014CrossRefGoogle Scholar
Law, C. K., Lian, W. C. and Wang, W. C.. The inverse nodal problem and the Ambarzumyan problem for the p-Laplacian. Proc. R. Soc. Edinburgh A 139 (2009), 12611273.10.1017/S0308210508000851CrossRefGoogle Scholar
Law, C. K. and Yang, C. F.. Reconstructing the potential function and its derivatives using nodal data. Inverse Probl. 14 (1998), 299312.10.1088/0266-5611/14/2/006CrossRefGoogle Scholar
McLaughlin, J. R.. Inverse spectral theory using nodal points as data-a unique result. J. Differ. Equ. 73 (1998), 354362.10.1016/0022-0396(88)90111-8CrossRefGoogle Scholar
Pokorny, Y. V., Penkin, O. M., Pryadiev, V. L. et al. Differential equations on geometrical graphs (Moscow: Fizmatlit, 2004) (Russian).Google Scholar
Rundell, W. and Sacks, P. E.. Inverse eigenvalue problem for a simple star graph. J. Spectral Theory 5 (2015), 363380.10.4171/JST/101CrossRefGoogle Scholar
Yang, C. F. and Yang, X. P.. Inverse nodal problems for differential pencils on a star-shaped graph. Inverse Probl. 26 (2010), 085008.10.1088/0266-5611/26/8/085008CrossRefGoogle Scholar
Yurko, V. A.. Inverse nodal problems for Sturm-Liouville operators on star-type graphs. J. Inverse Ill-Posed Probl. 16 (2008), 715722.10.1515/JIIP.2008.044CrossRefGoogle Scholar
Yurko V, A.. Inverse spectral problems for Sturm-Liouville operators on graphs. Inverse Probl. 21 (2005), 10751086.10.1088/0266-5611/21/3/017CrossRefGoogle Scholar