Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T13:40:49.191Z Has data issue: false hasContentIssue false

Optimal growth of harmonic functions frequently hypercyclic for the partial differentiation operator

Published online by Cambridge University Press:  18 January 2019

Clifford Gilmore
Affiliation:
Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland (clifford.gilmore@helsinki.fi; eero.saksman@helsinki.fi; hans-olav.tylli@helsinki.fi)
Eero Saksman
Affiliation:
Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland (clifford.gilmore@helsinki.fi; eero.saksman@helsinki.fi; hans-olav.tylli@helsinki.fi)
Hans-Olav Tylli
Affiliation:
Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland (clifford.gilmore@helsinki.fi; eero.saksman@helsinki.fi; hans-olav.tylli@helsinki.fi)

Abstract

We solve a problem posed by Blasco, Bonilla and Grosse-Erdmann in 2010 by constructing a harmonic function on ℝN, that is frequently hypercyclic with respect to the partial differentiation operator ∂/∂xk and which has a minimal growth rate in terms of the average L2-norm on spheres of radius r > 0 as r → ∞.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ahlfors, L. V.. Complex analysis, 3rd edn (New York: McGraw-Hill Book Co., 1978).Google Scholar
2Aldred, M. P. and Armitage, D. H.. Harmonic analogues of G. R. MacLane's universal functions. J. London Math. Soc. (2) 57 (1998), 148156.Google Scholar
3Aldred, M. P. and Armitage, D. H.. Harmonic analogues of G. R. Mac Lane's universal functions. II. J. Math. Anal. Appl. 220 (1998), 382395.Google Scholar
4Armitage, D. H. and Gardiner, S. J.. Classical potential theory. Springer Monographs in Mathematics (London: Springer-Verlag, 2001).Google Scholar
5Axler, S., Bourdon, P. and Ramey, W.. Harmonic function theory, 2nd edn volume 137 of Graduate Texts in Mathematics (New York: Springer-Verlag, 2001).Google Scholar
6Bayart, F. and Grivaux, S.. Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358 (2006), 50835117.Google Scholar
7Bayart, F., Matheron, É.. Dynamics of linear operators, volume 179 of Cambridge Tracts in Mathematics (Cambridge: Cambridge University Press, 2009).Google Scholar
8Blasco, O., Bonilla, A. and Grosse-Erdmann, K.-G.. Rate of growth of frequently hypercyclic functions. Proc. Edinb. Math. Soc. (2) 53 (2010), 3959.Google Scholar
9Bonet, J. and Bonilla, A.. Chaos of the differentiation operator on weighted Banach spaces of entire functions. Complex Anal. Oper. Theory 7 (2013), 3342.Google Scholar
10 Brelot, M. and Choquet, G.. Polynômes harmoniques et polyharmoniques. In Second colloque sur les équations aux dérivées partielles, Bruxelles, 1954 (ed. Thone, G.). pp. 4566 (Liège, Paris: Masson & Cie, 1955).Google Scholar
11Drasin, D. and Saksman, E.. Optimal growth of entire functions frequently hypercyclic for the differentiation operator. J. Funct. Anal. 263 (2012), 36743688.Google Scholar
12Grosse-Erdmann, K.-G. and Peris Manguillot, A.. Linear chaos (London: Universitext, Springer, 2011).Google Scholar
13Kuran, Ü.. On Brelot-Choquet axial polynomials. J. London Math. Soc. (2) 4 (1971), 1526.Google Scholar