Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T23:07:59.124Z Has data issue: false hasContentIssue false

Periodic solutions of four-order degenerate differential equations with finite delay in vector-valued function spaces

Published online by Cambridge University Press:  14 September 2023

Shangquan Bu
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China (sbu@math.tsinghua.edu.cn)
Gang Cai*
Affiliation:
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China (caigang-aaaa@163.com)
*
*Corresponding author.

Abstract

In this paper, we mainly investigate the well-posedness of the four-order degenerate differential equation ($P_4$): $(Mu)''''(t) + \alpha (Lu)'''(t) + (Lu)''(t)$ $=\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t),\,( t\in [0,\,2\pi ])$ in periodic Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$ and periodic Besov spaces $B_{p,q}^s\;(\mathbb {T}; X)$, where $A$, $B$, $L$ and $M$ are closed linear operators on a Banach space $X$ such that $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\beta,\,\gamma \in \mathbb {C}$, $G$ and $F$ are bounded linear operators from $L^p([-2\pi,\,0];X)$ (respectively $B_{p,q}^s([-2\pi,\,0];X)$) into $X$, $u_t(\cdot ) = u(t+\cdot )$ and $u'_t(\cdot ) = u'(t+\cdot )$ are defined on $[-2\pi,\,0]$ for $t\in [0,\, 2\pi ]$. We completely characterize the well-posedness of ($P_4$) in the above two function spaces by using known operator-valued Fourier multiplier theorems.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aparicio, R. and Keyantuo, V..Well-posedness of degenerate integro-differential equations in function spaces. Electron. J. Differ. Equ. 79 (2018), 31.Google Scholar
Aparicio, R. and Keyantuo, V.. Besov maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces. Math. Methods Appl. Sci. 43 (2020), 72397268.CrossRefGoogle Scholar
Aparicio, R. and Keyantuo, V.. $L^p$-maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces. J. Fourier Anal. Appl. 26 (2020), 34. 39 pp.CrossRefGoogle Scholar
Arendt, W., Batty, C., Hieber, M. and Neubrander, F.. Vector-valued Laplace Transforms and Cauchy problems (Basel, Birkhäuser, 2001).CrossRefGoogle Scholar
Arendt, W. and Bu, S.. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311343.CrossRefGoogle Scholar
Arendt, W. and Bu, S.. Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. 47 (2004), 1533.CrossRefGoogle Scholar
Bose, S. K. and Gorain, G. C.. Exact controllability and boundary stabilization of flexural vibrations of an internally damped flexible space structure. Appl. Math. Comput. 126 (2002), 341360.Google Scholar
Bose, S. K. and Gorain, G. C.. Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure. J. Optim. Theory Appl. 99 (1998), 423442.Google Scholar
Bu, S.. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Stud. Math. 214 (2013), 116.CrossRefGoogle Scholar
Bu, S. and Kim, J.. Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sin. Engl. Ser. 21 (2005), 10491056.CrossRefGoogle Scholar
Conejero, J. A., Lizama, C., Murillo-Arcila, M. and Seoane-Sepulveda, J. B.. Well-posedness degenerate third-order equations with delay and applications to inverse problems. Isr. J. Math. 229 (2019), 219254.CrossRefGoogle Scholar
Favini, A. and Yagi, A., Degenerate Differential Equations in Banach Spaces, Pure and Appl. Math., Vol. 215 (Dekker, New York, Basel, Hong Kong, 1999).CrossRefGoogle Scholar
Gorain, G. C.. Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in $\mathbb {R}^n$. J. Math. Anal. Appl. 319 (2006), 635650.CrossRefGoogle Scholar
Kaltenbacher, B., Lasiecka, I. and Pospieszalska, M.. Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci. 22 (2012), 1250035. 34 pp.CrossRefGoogle Scholar
Leal, C., Lizama, C. and Murillo-Arcila, M.. Lebesgue regularity for nonlocal time-discrete equations with delays. Fract. Calc. Appl. Anal. 21 (2018), 696715.CrossRefGoogle Scholar
Lizama, C. and Ponce, R.. Periodic solutions of degenerate differential equations in vector valued function spaces. Stud. Math. 202 (2011), 4963.CrossRefGoogle Scholar
Lizama, C. and Ponce, R.. Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. Proc. Edin. Math. Soc. 56 (2013), 853871.CrossRefGoogle Scholar
Poblete, V., Poblete, F. and Pozo, J. C.. Strong solutions of a neutral type equations with finite delay. J. Evol. Equ. 19 (2019), 361386.CrossRefGoogle Scholar
Poblete, V. and Pozo, J. C.. Periodic solutions of an abstract third-order differential equation. Stud. Math. 215 (2013), 195219.CrossRefGoogle Scholar
Ponce, R.. On well-posedness of degenerate fractional differential equations in vector valued function spaces. Isr. J. Math. 219 (2017), 727755.CrossRefGoogle Scholar