Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T01:49:31.016Z Has data issue: false hasContentIssue false

Some remarks about relaxation problems in the Calculus of Variations

Published online by Cambridge University Press:  14 November 2011

Fabián Flores-Bazán
Affiliation:
Universidad de Concepción, Facultad de Ciencias FÍsicas y Matemàticas, Dpto. de IngenierÍa Matemàtica, Casilla 4009, Concepción, Chile

Extract

We study variational problems for the functional F(u) = ∫Ω f(x, u(x), Lu(x)) dx where u∈uo + V, with Vbeing any closed linear subspace of W2.P(Ω) containing W2.p.0(Ω), Ω is a bounded open set, p > 1, L is a differential operator of second order. We determine the greatest lower semicontinuous function majorised by F for the weak topology of W2.p, for its sequential version if f satisfies no coercivity assumption, showing that in both cases the relaxed functional is expressed in terms of the function ξ↦ f**(x, u, ξ). Finally, an existence result in case f (not necessarily convex) depending only on the Laplacian, is given

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Acerbi, E. A. and Fusco, N.. Semicontinuity problems in Calculus of Variations. Arch. Rational Mech. Anal. 86(1984), 125–45.CrossRefGoogle Scholar
2Agmon, S., Douglis, A. and Nirenberg, L.. Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary values I and II. Commun. Pure Appl. Math. 12 (1959), 623727; 17 (1964), 35–92.CrossRefGoogle Scholar
3Amar, M. and Cicco, V. De. Relaxation of quasiconvex integrals of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 124, (1994), 927–46.CrossRefGoogle Scholar
4Aubert, G. and Tahraoui, R.. Théorèmes d'existence en Optimisation non Convexe. Appl. Anal. 18 (1984), 75100.CrossRefGoogle Scholar
5Aubert, G. and Tahraoui, R.. Sur une classe de problèmes différentiels non linéaires par une méthode variationnelle. Bol. Un. Mat. Ital. 7(3-B) (1989), 739–57.Google Scholar
6Ball, J. M., Currie, J. C. and Olivier, P. J.. Null Lagrangian, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41 (1981), 135–74.CrossRefGoogle Scholar
7Brézis, H.. Analyse Fonctionnelle (Paris: Masson, 1987).Google Scholar
8Buttazzo, G. and Leaci, A.. Relaxation results for a class of variational integrals. J. Funct. Anal. 61 (1985), 360–77.CrossRefGoogle Scholar
9Buttazzo, G.. Some relaxation problems in optimal control theory. J. Math. Anal. Appl. 125 (1987), 272–87.CrossRefGoogle Scholar
10Buttazzo, G.. Semicontinuity, relaxation and integral representation in the Calculus of Variations, Pitman Research Notes in Mathematics 207 (Harlow: Longman, 1989).Google Scholar
11Cellina, A. and Flores, F.. Radially symmetric solutions of a class of problems of the calculus of variations without convexity assumptions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992), 465–78.Google Scholar
12Dacorogna, B.. Weak continuity and weak lower semicontinuity of nonlinear functionals, Lecture Notes in Mathematics 922 (Berlin: Springer, 1982).CrossRefGoogle Scholar
13Dacorogna, B.. Quasiconvexity and relaxation of nonconvex problems in the Calculus of Variations. J. Funct. Anal. 46 (1982), 102–18.CrossRefGoogle Scholar
14Maso, G. Dal. An Introduction to Γ-convergence (Boston: Birkhäuser, 1993).CrossRefGoogle Scholar
15Ekeland, I.. Sur le contrôle optimal de systèmes par des equations elliptiques. J. Funct. Anal. 9 (1972), 162.CrossRefGoogle Scholar
16Eisen, G.. A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscripta Math. 27 (1979), 73–9.CrossRefGoogle Scholar
17Ekeland, I. and Temam, R.. Convex Analysis and Variational Problems (Amsterdam: North-Holland, 1976).Google Scholar
18Flores, F.. On radial solutions for non-convex variational problems (To appear in Houston J. Math).).Google Scholar
19Fonseca, I. and Rybka, P.. Relaxation of multiple integrals in the space BV(Ω, ℝp). Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 321–48.CrossRefGoogle Scholar
20Gilbarg, D. and Trudinger, N.. Elliptic Partial Differential Equations of Second Order (Berlin: Springer, 1983).Google Scholar
21Marcellini, P. and Sbordone, C.. Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4(1980), 241–57.CrossRefGoogle Scholar
22Percivale, D.. A remark on relaxation of integral functionals. Nonlinear Anal. 16 (1991), 791–3.CrossRefGoogle Scholar
23Rabier, P. J.. New existence results for some nonconvex optimization problems. Com. Partial Differential Equations 14 (1989), 699740.CrossRefGoogle Scholar
24Raymond, J. P.. Problèmes de Calcul des Variations et de Contrôle Optimal: Existence et Regularitô des Solutions (These d'habilitation, Université Paul Sabatier, Toulouse, 1990).Google Scholar
25Valadier, M.. Régularisation s.c.i., relaxation et théorèmes bang-band. C.R. Acad. Sci. Paris Sér. I Math. 293(2) (1981), 115–16.Google Scholar