Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T03:30:37.307Z Has data issue: false hasContentIssue false

An elementary proof of Gorny's inequality

Published online by Cambridge University Press:  14 November 2011

C. Fabry
Affiliation:
Institut Mathematique, Université Catholique de Louvain, chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

Synopsis

Gorny's inequality provides upper bounds for the sup-norms ∥f(k) of a function f over an interval [a, b] for k = 1, …, n − 1, assuming the sup-norms of f and f(n) to be given. We present a simple proof of that inequality and obtain sharper estimates of the constants contained in that inequality, compared with the original verison of Gorny.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cavaretta, A.S. Jr., An elementary proof of Kolmogorov's theorem. Amer. Math. Monthly 81 (1974), 480486.CrossRefGoogle Scholar
2Duffin, R. J. and Schaeffer, A. C.. A refinement of an inequality of the brothers Markoff. Trans. Amer. Math. Soc. 50 (1941), 517528.CrossRefGoogle Scholar
3Eloe, P. W. and Henderson, J.. Nonlinear boundary value problems and a priori bounds on solutions. SIAM J. Math. Anal. 15 (1984), 642647.Google Scholar
4Gorny, A.. Contribution à l'étude des fonctions dérivables d'une variable réelle. Ada Math. 71 (1939), 317358.Google Scholar
5Jackson, L. K.. A Nagumo condition for ordinary differential equations. Proc. Amer. Math. Soc. 57 (1976), 9396.CrossRefGoogle Scholar
6Karlin, S.. Oscillatory perfect splines and related extremal problems. In Studies in Spline Functions and Approximation Theory, eds. Karlin, S., Micchelli, C. A., Pinkus, A. and Schoenberg, I. J. (New York: Academic Press, 1976).Google Scholar
7Kolmogorov, A. N.. On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval. Amer. Math. Soc. Transl. 4 (1949), 233243.Google Scholar
8Landau, E.. Einige Ungleichungen für zweimal differentzierbare Funktionen. Proc. London Math. Soc. 13 (1913), 4349.Google Scholar
9Rivlin, T. J.. The Chebyshev Polynomials (New York: Wiley, 1974).Google Scholar
10Schoenberg, I. J.. The elementary cases of Landau's problem of inequalities between derivatives. Amer. Math. Monthly 80 (1973), 121158.CrossRefGoogle Scholar
11Vaserman, L. M. and Lepin, A. Ya.. Generalized Bernstein conditions for nonlinear systems of ordinary differential equations. Differentsial'nye Uravneniya 5 (1969), 11071113.Google Scholar
12Kwong, M. K. and Zettl, A.. Ramifications of Landau's inequality. Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 175212.CrossRefGoogle Scholar