Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T10:45:41.171Z Has data issue: false hasContentIssue false

Behaviour at ±∞ for a model of laminar flames with applications to questions of flame propagation versus extinction

Published online by Cambridge University Press:  14 November 2011

Joel D. Avrin
Affiliation:
Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, U.S.A

Synopsis

We consider the behaviour at x = ±∞ of solutions to reaction-diffusion equations modelling laminar flames in a premixed reactive gas. We show that if the initial data have limits at ±∞, then the solutions satisfy ODEs at ±∞ for all positive time. We then analyse the qualitative behaviour of solutions to the ODEs. Our applications include extensions of previous results on questions of flame propagation versus extinction, and a new decay result: if the initial temperature is above ignition temperature at one end of the domani and if the initial concentration vanishes at the other, then we show that the concentration decays^to zero uniformly as the time variable goes to infinity.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Avrin, J. D.. Qualitative theory for a model of laminar flames with arbitrary nonnegative initial data. J. Differential Equations. 84 (1990), 290308.Google Scholar
2Berestycki, H., Nicolaenko, B.Scheurer, B.. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16 (1985), 12071242.Google Scholar
3Buckmaster, J.Ludford, G. S. S.. Theory of Laminar Flames (Edinburgh: Cambridge University Press, 1982).CrossRefGoogle Scholar
4Clavin, P.. Dynamical behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Comb. Sci. 11 (1985), 159.Google Scholar
5Larroutrou, B.. The equations of one-dimensional unsteady flame propagation: existence and uniqueness, SIAM J. Math. Anal. 19 (1988), 3259.CrossRefGoogle Scholar
6Marion, M.. Etude mathematique d'un modèle de Damme lamínaire sans température d'ignition: I-Cas scalaire. Ann. Fac. Sci. Toulouse Math. (5) 6 (1984), 215255.Google Scholar
7Marion, M.. Qualitative properties of a nonlinear system for laminar flames without ignition temperature. Nonlinear Anal. 9 (1985), 12691292.CrossRefGoogle Scholar
8Protter, M. H.Weinberger, H. F.. Maximum Principles in Differential Equations (Englewood Cliffs, N.J.: Prentice Hall, 1967).Google Scholar
9Roquejoffre, J. M., Etude mathématique et numérique d'un problème en théorie de la combustion, Thesis, INRIA Sophia Antipolis, June 1988.Google Scholar
10Sivashinsky, G. I.. Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15 (1983), 179199.CrossRefGoogle Scholar
11Terman, D.. Connection problems arising from nonlinear diffusion equations. In Proceedings of the Microconference on Nonlinear Diffusion, eds Serrin, J., Peletier, L., Ni, W.-M., Berkeley, California, 1986.Google Scholar
12Terman, D.. The asymptotic stability of a travelling wave solution arising from a combustion model (preprint).Google Scholar
13. Terman, D.. Stability of planar wave solutions to a combustion model (preprint).Google Scholar
14. Williams, F.. Combustion Theory, 2nd edn (Reading, MA: Addison-Wesley, 1985).Google Scholar