Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T09:06:00.375Z Has data issue: false hasContentIssue false

The closure of the generalised eigenspace of a class of infinitesimal generators

Published online by Cambridge University Press:  14 November 2011

S. M. Verduyn Lunel
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A and Faculteit Wiskunde en Informatica, Vrije Universiteit, de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Synopsis

In this paper we study the fine geometric structure of a class of strongly continuous semigroups that satisfy the following property: the resolvent of the infinitesimal generator can be represented as the quotient of entire functions of finite exponential type. This class includes the solution map for functional differential equations and certain partial differential equations. In particular, we present necessary and sufficient conditions for one-to-oneness of the solution map and for completeness of the system of generalised eigenfunctions of the generator.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ahlfors, L. and Heins, M.. Questions of regularity connected with the Phragmén-Lindelöf principle. Ann. of Math. 50 (1949), 341346.CrossRefGoogle Scholar
2Boas, R.. Entire Functions (New York: Academic Press, 1954).Google Scholar
3Butzer, P. L. and Beerens, H.. Semi-Groups of Operators and Approximation (New York: Springer, 1967).CrossRefGoogle Scholar
4Clement, Ph., Diekmann, O., Gyllenberg, M., Heijmans, H. J. A. M. and Thieme, H. R.. Perturbation theory for dual semigroups. I. The sun-reflexive case. Math. Ann. 277 (1988), 709725.CrossRefGoogle Scholar
5Conway, J. B.. Functions of One Complex Variable, 2nd edn (New York: Springer, 1978).CrossRefGoogle Scholar
6Doetsch, G.. Handbuch der Laplace-Transformation Band I (Based: Birkhäuser, 1950).CrossRefGoogle Scholar
7Hale, J. K.. Theory of Functional Differential Equations (Berlin: Springer, 1977).CrossRefGoogle Scholar
8Henry, D.. Linear autonomous neutral functional differential equations. J. Differential Equations 15 (1974), 106128.CrossRefGoogle Scholar
9Hille, E. and Phillips, R.. Functional Analysis and Semigroups (Providence, R. I.: American Mathematical Society, 1957).Google Scholar
10. Kato, T.. Perturbation Theory for Linear Operators. 2nd edn (Berlin: Springer, 1976).Google Scholar
11Neves, A. F. and Lopes, O.. On the spectrum of evolution operators generated by hyperbolic systems. J. Fund. Anal. 67 (1986), 320344.CrossRefGoogle Scholar
12Paley, R. E. A. C. and Wiener, N.. Fourier Transforms in the Complex Domain (New York: American Mathematical Society, 1934).Google Scholar
13. Pazy, A.. Semigroup of Linear Operators and Applications to Partial Differential Equations (Berlin: Springer, 1983).CrossRefGoogle Scholar
14. Taylor, A. E. and Lay, D. C.. Introduction to Functional Analysis (New York: Wiley, 1980).Google Scholar
15. Lunel, S. M. Verduyn. A sharp version of Henry's theorem on small solutions. J. Differential Equations 62 (1986), 266274.CrossRefGoogle Scholar
16Lunel, S. M. Verduyn. Exponential type calculus for linear delay equations (Amsterdam: Centre for Mathematics and Computer Science, Tract 57, 1989).Google Scholar
17Lunel, S. M. Verduyn. Series expansions and small solutions for Volterra equations of convolution type. J. Differential Equations 85 (1990), 1753.CrossRefGoogle Scholar