Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:00:48.308Z Has data issue: false hasContentIssue false

Compact groups in which all elements have countable right Engel sinks

Published online by Cambridge University Press:  13 November 2020

E. I. Khukhro
Affiliation:
Charlotte Scott Research Centre for Algebra, University of Lincoln, Lincoln, UK Sobolev Institute of Mathematics, Novosibirsk630090, Russia (khukhro@yahoo.co.uk)
P. Shumyatsky
Affiliation:
Department of Mathematics, University of Brasilia, DF 70910-900, Brasilia, Brazil (pavel@unb.br)

Abstract

A right Engel sink of an element g of a group G is a set ${\mathscr R}(g)$ such that for every xG all sufficiently long commutators $[...[[g,x],x],\dots ,x]$ belong to ${\mathscr R}(g)$. (Thus, g is a right Engel element precisely when we can choose ${\mathscr R}(g)=\{ 1\}$.) It is proved that if every element of a compact (Hausdorff) group G has a countable right Engel sink, then G has a finite normal subgroup N such that G/N is locally nilpotent.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourbaki, N.. Elements of Mathematics. Lie Groups and Lie Algebras. Part I: Chapters 1–3, Hermann, Paris (Reading, MA: Addison-Wesley, 1975).Google Scholar
Breuillard, E. and Gelander, T.. A topological Tits alternative. Ann. Math. (2) 166 (2007), 427474.10.4007/annals.2007.166.427CrossRefGoogle Scholar
Detomi, E., Morigi, M. and Shumyatsky, P.. Bounding the exponent of a verbal subgroup. Annali Mat. 193 (2014), 14311441.CrossRefGoogle Scholar
Feit, W. and Thompson, J. G.. Solvability of groups of odd order. Pac. J. Math. 13 (1963), 7751029.CrossRefGoogle Scholar
Hall, P. and Higman, G.. The p-length of a p-soluble group and reduction theorems for Burnside's problem. Proc. London Math. Soc. (3) 6 (1956), 142.CrossRefGoogle Scholar
Heineken, H.. Eine Bemerkung Über engelsche Elemente. Arch. Math. (Basel) 11 (1960), 321.CrossRefGoogle Scholar
Hofmann, K. H. and Morris, S. A.. The Structure of Compact Groups (Berlin: De Gruyter, 2006).CrossRefGoogle Scholar
Huppert, B.. Endliche Gruppen, vol. I (Berlin: Springer, 1967).CrossRefGoogle Scholar
Kelley, J. L.. General topology. Grad. Texts in Math., vol. 27 (New York: Springer, 1975).Google Scholar
Khukhro, E. I. and Shumyatsky, P.. Words and pronilpotent subgroups in profinite groups. J. Aust. Math. Soc. 97 (2014), 343364.CrossRefGoogle Scholar
Khukhro, E. I. and Shumyatsky, P.. Nonsoluble and non-p-soluble length of finite groups. Israel J. Math. 207 (2015), 507525.CrossRefGoogle Scholar
Khukhro, E. I. and Shumyatsky, P.. Almost Engel compact groups. J. Algebra 500 (2018), 439456.CrossRefGoogle Scholar
Khukhro, E. I. and Shumyatsky, P.. Compact groups all elements of which are almost right Engel. Quart. J. Math. 70 (2019), 879893.CrossRefGoogle Scholar
Khukhro, E. I. and Shumyatsky, P.. Compact groups with countable Engel sinks. Bull. Math. Sci. 2020), Article 2050015, DOI 10.1142/S1664360720500150.Google Scholar
Lazard, M.. Groupes analytiques p-adiques. Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389603.Google Scholar
Medvedev, Y.. On compact Engel groups. Israel J. Math. 185 (2003), 147156.CrossRefGoogle Scholar
Ribes, L. and Zalesskii, P.. Profinite Groups (Berlin: Springer, 2010).CrossRefGoogle Scholar
Robinson, D. J. S.. A Course in the Theory of Groups (New York: Springer, 1996).CrossRefGoogle Scholar
Shalev, A.. Polynomial identities in graded group rings, restricted Lie algebras and p-adic analytic groups. Trans. Am. Math. Soc. 337 (1993), 451462.Google Scholar
Shumyatsky, P.. On pro-p groups admitting a fixed-point-free automorphism. J. Algebra 228 (2000), 357366.10.1006/jabr.1999.8267CrossRefGoogle Scholar
Shumyatsky, P.. Commutators in residually finite groups. Israel J. Math. 182 (2011), 149156.CrossRefGoogle Scholar
Shumyatsky, P.. On the exponent of a verbal subgroup in a finite group. J. Aust. Math. Soc. 93 (2012), 325332.10.1017/S1446788712000341CrossRefGoogle Scholar
Thompson, J. G.. Automorphisms of solvable groups. J. Algebra 1 (1964), 259267.10.1016/0021-8693(64)90022-5CrossRefGoogle Scholar
Turull, A.. Character theory and length problems. In Finite and Locally Finite Groups, NATO ASI Series (eds. Hartley, B., Seitz, G. M., Borovik, A. V. and Bryant, R. M.), vol. 471 (Dordrecht: Kluwer, 1995, pp. 377400.CrossRefGoogle Scholar
Wilson, J. S.. On the structure of compact torsion groups. Monatsh. Math. 96 (1983), 5766.CrossRefGoogle Scholar
Wilson, J. S.. Profinite Groups (Oxford: Clarendon Press, 1998).Google Scholar
Wilson, J. S. and Zelmanov, E. I.. Identities for Lie algebras of pro-p groups. J. Pure Appl. Algebra 81 (1992), 103109.CrossRefGoogle Scholar
Zelmanov, E.. Nil Rings and Periodic Groups. Lecture Notes in Math. (Seoul: Korean Math. Soc., 1992).Google Scholar
Zelmanov, E.. Lie methods in the theory of nilpotent groups. In Groups’ 93 Galaway/St Andrews (eds. Campbell, C. M., Hurley, T. C., Robertson, E. F., Tobin, S. J. and Ward, J. J.), pp. 567585 (Cambridge: Cambridge Univ. Press, 1995).10.1017/CBO9780511629297.023CrossRefGoogle Scholar
Zelmanov, E.. Lie algebras and torsion groups with identity. J. Comb. Algebra 1 (2017), 289340.CrossRefGoogle Scholar