Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:58:05.617Z Has data issue: false hasContentIssue false

Convergence for the fractional p-Laplacian and its application to the extended Nirenberg problem

Published online by Cambridge University Press:  05 April 2023

Zhiwen Zhao*
Affiliation:
Beijing Computational Science Research Center, Beijing 100193, China zwzhao365@163.com
Rights & Permissions [Opens in a new window]

Abstract

The main objective of this paper is to establish the convergence for the fractional $p$-Laplacian of sequences of nonnegative functions with $p>2$. Furthermore, we show the blow-up phenomena for solutions to the extended Nirenberg problem modelled by fractional $p$-Laplacian with the prescribed negative functions.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction and main results

The fractional Laplacian has nowadays become a focus of research due to its extensive applications in describing anomalous diffusions in plasmas, flames propagation and chemical reactions in liquids, population dynamics, geophysical fluid dynamics, see [Reference Caffarelli and Vasseur4, Reference Chen, Li and Ma7, Reference Constantin8] and the references therein. Moreover, it also has important applications in the fields of probability and finance, for example, see [Reference Applebaum1Reference Bertoin3]. In particular, it can be regarded as the infinitesimal generator of an isotropic stable Lévy diffusion process. To better apply theories of the fractional Laplacian to practice, it is significantly important to make clear its own properties, especially those different from the classical Laplacian operator.

Before listing our main results, we first fix some notations. Let $n\geq 1$, $p\geq 2$ and $0<\sigma <1$. Define the fractional $p$-Laplacian $(-\Delta )^{\sigma }_{p}$ as follows:

\[ (-\Delta)^{\sigma}_{p}u(x)=c_{n,\sigma p}P.V.\int_{\mathbb{R}^{n}}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{n+\sigma p}}\,{\rm d}y, \]

where $c_{n,\sigma p}$ is a positive constant and $P.V.$ represents the Cauchy principal value. It is worth pointing out that $(-\Delta )^{\sigma }_{p}$ becomes the linear fractional Laplacian operator $(-\Delta )^{\sigma }$ if $p=2$, while it is a nonlinear nonlocal operator if $p>2$. The definition of $(-\Delta )^{\sigma }_{p}u$ is valid under the condition that $u\in C^{\sigma p+\alpha }_{loc}(\mathbb {R}^{n})\cap \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$ for some $\alpha >0$, where $C^{\sigma p+\alpha }_{loc}:=C^{[\sigma p+\alpha ],\sigma p+\alpha -[\sigma p+\alpha ]}_{loc}$ with $[\sigma p+\alpha ]$ denoting the integer part of $\sigma p+\alpha$,

\[ \mathcal{L}_{\sigma p}(\mathbb{R}^{n}):=\left\{u\in L^{p-1}_{loc}(\mathbb{R}^{n})\,\Big|\;\int_{\mathbb{R}^{n}}\frac{|u(x)|^{p-1}}{1+|x|^{n+\sigma p}}\,{\rm d}x<\infty \right\}. \]

Recently, Du et al. [Reference Du, Jin, Xiong and Yang11] derived the following fact:

\begin{align*} `& \text{If}\ u_{i}\rightarrow u\ {\rm in}\ C^{2\sigma+\alpha}_{loc}\ {\rm as}\ i\rightarrow\infty, {\rm and}\ \{(-\Delta)^{\sigma}u_{i}\}\ \text{converges pointwisely,} \\ & \text{then}\ (-\Delta)^{\sigma}u_{i}\rightarrow (-\Delta)^{\sigma}u-\theta {\rm for\ some}\ \theta\geq0.' \end{align*}

In particular, they constructed an example showing that the nonnegative constant $\theta$ can be strictly positive, which is different from the classical Laplacian operator. This discrepancy essentially stems from the nonlocal behaviour of the fractional Laplacian operator. Inspired by their proof for the linear fractional Laplacian, in this paper we further overcome the nonlinear difficulty for the fractional $p$-Laplacian operator and prove that the above fact also holds for the nonlinear nonlocal operator $(-\Delta )^{\sigma }_{p}$ with $p>2$. Moreover, our result can be extended to more general nonlinear nonlocal operators. The principal result of this paper is stated as follows.

Theorem 1.1 Let $n\geq 1$, $p>2$, $0<\sigma <1$ and $\alpha >0$. Assume that a sequence of nonnegative functions $\{u_{i}\}\subset \mathcal {L}_{\sigma p}(\mathbb {R}^{n})\cap C^{\sigma p+\alpha }_{loc}(\mathbb {R}^{n})$ converges in $C_{loc}^{\sigma p+\alpha }(\mathbb {R}^{n})$ to a function $u\in \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$, and $\{(-\Delta )^{\sigma }_{p}u_{i}\}$ converges pointwisely in $\mathbb {R}^{n}$. Then for any $x\in \mathbb {R}^{n}$,

\[ \lim_{i\rightarrow\infty}(-\Delta)^{\sigma}_{p}u_{i}(x)=(-\Delta)^{\sigma}_{p}u(x)-\theta, \]

where $\theta$ is a nonnegative constant given by

\[ \theta=c_{n,\sigma p}\lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\int_{B_{R}^{c}}\frac{u_{i}^{p-1}(x)}{|x|^{n+\sigma p}}\,{\rm d}x. \]

Proof. For any fixed $x\in \mathbb {R}^{n}$ and $R > > |x|+1$, let

(1.1)\begin{align} & (-\Delta)^{\sigma}_{p}u(x)-(-\Delta)^{\sigma}_{p}u_{i}(x)\nonumber\\ & = c_{n,\sigma p}\int_{B_{R}(0)}\frac{|u(x)-u(y)|^{p-2}(u(x)\!-\!u(y))\!-\!|u_{i}(x)\!-\!u_{i}(y)|^{p-2}(u_{i}(x)-u_{i}(y))}{|x-y|^{n+\sigma p}}\,{\rm d}y\nonumber\\ & \quad+c_{n,\sigma p}\int_{B_{R}^{c}(0)}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{n+\sigma p}}\,{\rm d}y\nonumber\\ & \quad+c_{n,\sigma p}\int_{B_{R}^{c}(0)}\frac{-|u_{i}(x)-u_{i}(y)|^{p-2}(u_{i}(x)-u_{i}(y))}{|x-y|^{n+\sigma p}}\,{\rm d}y\nonumber\\ & = :\Phi_{i}(x,R)+\mathfrak{G}(x,R)+\Psi_{i}(x,R). \end{align}

In light of the fact that $u_{i}\rightarrow u$ in $C^{\sigma p+\alpha }(B_{2R}(0))$, we obtain that for each $0<\varepsilon <1$, there exists an integer $N>0$ such that for every $i>N$,

(1.2)\begin{equation} \|u_{i}-u\|_{C^{\sigma p+\alpha}(B_{2R}(0))}\leq \varepsilon^{\frac{p}{\min\{1,p-2\}}},\quad \|u_{i}\|_{C^{\sigma p+\alpha}(B_{2R}(0))}\leq\|u\|_{C^{\sigma p+\alpha}(B_{2R}(0))}+1. \end{equation}

Define

\[ \Phi_{i}(x,R\setminus\varepsilon):=\Phi_{i}(x,R)-\Phi_{i}(x,\varepsilon),\quad\mathcal{M}:=\|u\|_{C^{\sigma p+\alpha}(B_{2R}(0))}+1, \]

where $\Phi _{i}(x,\varepsilon )$ denotes the integral in $\Phi _{i}(x,R)$ with the domain $B_{R}(0)$ replaced by $B_{\varepsilon }(x)$. Using (1.2), we deduce that for $x,y\in B_{2R}(0)$, $i>N$,

\begin{align*} & \left||u(x)-u(y)|^{p-2}(u(x)-u(y))-|u_{i}(x)-u_{i}(y)|^{p-2}(u_{i}(x)-u_{i}(y))\right|\\ & \leq|u(x)-u(y)|^{p-2}|(u-u_{i})(x)-(u-u_{i})(y)|\\ & \quad+\left||u(x)-u(y)|^{p-2}-|u_{i}(x)-u_{i}(y)|^{p-2}\right||u_{i}(x)-u_{i}(y)|\\ & \leq C(p,\mathcal{M})\|u_{i}-u\|^{\min\{1,p-2\}}_{L^{\infty}(B_{2R}(0))}\leq C(p,\mathcal{M})\varepsilon^{p}, \end{align*}

which yields that

(1.3)\begin{equation} \left|\Phi_{i}(x,R\setminus\varepsilon)\right|\leq C(p,\mathcal{M})\varepsilon^{p}\int_{B_{2R}(x)\setminus B_{\varepsilon}(x)}\frac{{\rm d}y}{|x-y|^{n+\sigma p}}\leq C(p,n,\sigma,\mathcal{M})\varepsilon^{(1-\sigma)p}. \end{equation}

On the other hand, if $\sigma p+\alpha \in (0,1]$, then it follows from (1.2) that

(1.4)\begin{align} \left|\Phi_{i}(x,\varepsilon)\right|& \leq C(p,\sigma,\alpha,\mathcal{M})\int_{B_{\varepsilon}(x)}\frac{|x-y|^{(\sigma p+\alpha)(p-1)}}{|x-y|^{n+\sigma p}}\nonumber\\ & \leq C(p,n,\sigma,\alpha,\mathcal{M})\varepsilon^{(\sigma p+\alpha)(p-2)+\alpha}. \end{align}

When $\sigma p+\alpha \in (1,\infty )$, utilizing (1.2) again, it follows from Taylor expansion that

\begin{align*} & \left||u_{i}(x)-u_{i}(y)|^{p-2}(u_{i}(x)-u_{i}(y))-|\nabla u_{i}(x)(x-y)|^{p-2}\nabla u_{i}(x)(x-y)\right|\\ & \leq C(p,\sigma,\alpha,\mathcal{M})\left(|\nabla u_{i}(x)(x-y)|^{p-2}+|x-y|^{\min\{2,\sigma p+\alpha\}(p-2)}\right)|x-y|^{\min\{2,\sigma p+\alpha\}}\\ & \leq C(p,\sigma,\alpha,\mathcal{M})|x-y|^{\min\{p,(\sigma+1)p+\alpha-2\}}, \end{align*}

where we utilized the following element inequality:

\[ \left||a|^{p-2}a-|b|^{p-2}b\right|\leq C(p)|a-b|\left(|a-b|^{p-2}+|b|^{p-2}\right),\quad\text{for}\ a,b\in\mathbb{R}^{n}. \]

By the same argument, we have

\begin{align*} & \left||u(x)-u(y)|^{p-2}(u(x)-u(y))-|\nabla u(x)(x-y)|^{p-2}\nabla u(x)(x-y)\right|\\ & \leq C(p,\sigma,\alpha,\mathcal{M})|x-y|^{\min\{p,(\sigma+1)p+\alpha-2\}}. \end{align*}

Therefore, we obtain that if $\sigma p+\alpha \in (1,\infty )$,

(1.5)\begin{align} \left|\Phi_{i}(x,\varepsilon)\right|& \leq C(p,\sigma,\alpha,\mathcal{M})\int_{B_{\varepsilon}(x)}\frac{|x-y|^{\min\{p,(\sigma+1)p+\alpha-2\}}}{|x-y|^{n+\sigma p}}\,{\rm d}y\nonumber\\ & \leq C(p,n,\sigma,\alpha,\mathcal{M})\varepsilon^{\min\{(1-\sigma)p,p+\alpha-2\}}, \end{align}

where we utilized the anti-symmetry of $\nabla u(x)(x-y)$ and $\nabla u_{i}(x)(x-y)$ with regard to the centre $x$. Consequently, combining (1.3)–(1.5), we deduce that for every $i>N$,

\[ \left|\Phi_{i}(x,R)\right|\leq C(p,n,\sigma,\alpha,\mathcal{M}) \begin{cases} \varepsilon^{\min\{(1-\sigma)p,(\sigma p+\alpha)(p-2)+\alpha\}}, & \text{if}\ \sigma p+\alpha\in(0,1],\\ \varepsilon^{\min\{(1-\sigma)p,p+\alpha-2\}}, & \text{if}\ \sigma p+\alpha\in(1,\infty), \end{cases} \]

which implies that

(1.6)\begin{equation} \lim_{i\rightarrow\infty}\Phi_{i}(x,R)=0. \end{equation}

Note that $\{(-\Delta )^{\sigma }_{p}u_{i}\}$ is a pointwise convergent sequence, we then deduce from (1.1) and (1.6) that

(1.7)\begin{equation} \lim\limits_{i\rightarrow\infty}\Psi_{i}(x,R)\;\,\text{exists and is finite}. \end{equation}

Since $u\in \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$ and $R > > |x|+1$, then

\begin{align*} & \limsup_{R\rightarrow\infty}\int_{B_{R}^{c}(0)}\frac{|u(x)-u(y)|^{p-1}}{|x-y|^{n+\sigma p}}\,{\rm d}y\\ & \leq \limsup_{R\rightarrow\infty}\left(\frac{R}{R-|x|}\right)^{n+\sigma p}\int_{B_{R}^{c}(0)}\frac{C(p)(u^{p-1}(x)+u^{p-1}(y))}{|y|^{n+\sigma p}}\,{\rm d}y=0, \end{align*}

which yields that

\[ \lim_{R\rightarrow\infty}\mathfrak{G}(x,R)=0. \]

This, in combination with (1.1) and (1.6)–(1.7), leads to that $\lim \limits _{R\rightarrow \infty }\lim \limits _{i\rightarrow \infty }\Psi _{i}(x,R)$ exists and is finite,

(1.8)\begin{equation} (-\Delta)^{\sigma}_{p}u(x)-\lim_{i\rightarrow\infty}(-\Delta)^{\sigma}_{p}u_{i}(x)=\lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\Psi_{i}(x,R). \end{equation}

Denote

\begin{align*} \mathcal{K}_{1}& :={-}u_{i}^{p-2}(y)u_{i}(x),\\ \mathcal{K}_{2}& :=\left(u_{i}^{p-2}(y)-|u_{i}(x)-u_{i}(y)|^{p-2}\right)u_{i}(x),\\ \mathcal{K}_{3}& :={-}\left(u_{i}^{p-2}(y)-|u_{i}(x)-u_{i}(y)|^{p-2}\right)u_{i}(y),\\ \Theta& :={-}|u_{i}(x)-u_{i}(y)|^{p-2}(u_{i}(x)-u_{i}(y)). \end{align*}

Then we have

(1.9)\begin{equation} u_{i}^{p-1}(y)-\sum^{3}_{j=1}|\mathcal{K}_{j}|\leq\Theta=u_{i}^{p-1}(y)+\sum^{3}_{j=1}\mathcal{K}_{j}\leq u_{i}^{p-1}(y)+\sum^{3}_{j=2}|\mathcal{K}_{j}|. \end{equation}

For any given $\varepsilon >0$, it follows from Young's inequality that

(1.10)\begin{equation} |\mathcal{K}_{1}|\leq \varepsilon u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{p-2}}u^{p-1}_{i}(x). \end{equation}

We now divide into three cases to estimate $\mathcal {K}_{2}$ and $\mathcal {K}_{3}$ in the following.

Case 1. Consider $2< p\leq 3$. Since

\begin{align*} & u_{i}^{p-2}(y)\leq (|u_{i}(y)-u_{i}(x)|+u_{i}(x))^{p-2}\leq|u_{i}(y)-u_{i}(x)|^{p-2}+u_{i}^{p-2}(x),\\ & |u_{i}(y)-u_{i}(x)|^{p-2}\leq u_{i}^{p-2}(y)+u_{i}^{p-2}(x), \end{align*}

then

\[ \left|u_{i}^{p-2}(y)-|u_{i}(x)-u_{i}(y)|^{p-2}\right|\leq u_{i}^{p-2}(x). \]

Hence it follows from Young's inequality that

(1.11)\begin{equation} |\mathcal{K}_{2}|\leq u^{p-1}_{i}(x),\quad|\mathcal{K}_{3}|\leq \varepsilon u_{i}^{p-1}(y)+\frac{C(p)}{\varepsilon^{\frac{1}{p-2}}}u^{p-1}_{i}(x). \end{equation}

Substituting (1.10)–(1.11) into (1.9), we derive

(1.12)\begin{equation} (1-2\varepsilon)u^{p-1}_{i}(y)-\frac{C(p)}{\varepsilon^{p-2}}u^{p-1}_{i}(x)\leq\Theta\leq(1+\varepsilon)u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{1}{p-2}}}u^{p-1}_{i}(x). \end{equation}

Case 2. Consider the case when $p>3$ is an integer. From the binomial theorem and Young's inequality, we have

(1.13)\begin{align} (a+b)^{p-2}& =a^{p-2}+\sum^{p-2}_{j=1}C_{p-2}^{j}a^{p-2-j}b^{j}\leq(1+\varepsilon)a^{p-2}+C(p)b^{p-2}\sum^{p-2}_{j=1}\varepsilon^{-\frac{p-2-k}{k}}\nonumber\\ & \leq(1+\varepsilon)a^{p-2}+\frac{C(p)}{\varepsilon^{p-3}}b^{p-2},\quad \text{for any }a,b\geq0. \end{align}

Using (1.13), we deduce

\[ u_{i}^{p-2}(y)\leq(|u_{i}(y)-u_{i}(x)|+u_{i}(x))^{p-2}\leq(1+\varepsilon)|u_{i}(x)-u_{i}(y)|^{p-2}+\frac{C(p)}{\varepsilon^{p-3}}u_{i}^{p-2}(x), \]

which implies that

\begin{align*} u_{i}^{p-2}(y)-|u_{i}(y)-u_{i}(x)|^{p-2}& \leq\varepsilon|u_{i}(x)-u_{i}(y)|^{p-2}+\frac{C(p)}{\varepsilon^{p-3}}u_{i}^{p-2}(x)\\ & \leq \varepsilon(1+\varepsilon)u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-2}_{i}(x). \end{align*}

Analogously,

\[ |u_{i}(y)-u_{i}(x)|^{p-2}-u_{i}^{p-2}(y)\leq\varepsilon u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-2}_{i}(x). \]

Hence, we have

(1.14)\begin{equation} \left|u_{i}^{p-2}(y)-|u_{i}(y)-u_{i}(x)|^{p-2}\right|\leq\varepsilon(1+\varepsilon)u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-2}_{i}(x). \end{equation}

Utilizing (1.14) and Young's inequality, we obtain

\begin{align*} |\mathcal{K}_{2}|& \leq\varepsilon(1+\varepsilon)u^{p-2}_{i}(y)u_{i}(x)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-1}_{i}(x)\leq\varepsilon u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-1}_{i}(x),\\ |\mathcal{K}_{3}|& \leq\varepsilon(1+\varepsilon)u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-2}_{i}(x)u_{i}(y)\leq\varepsilon(2+\varepsilon) u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{p-2}}u^{p-1}_{i}(x), \end{align*}

which, in combination with (1.9)–(1.10), gives that

(1.15)\begin{align} \Theta& \leq(1+3\varepsilon+\varepsilon^{2})u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{p-2}}u^{p-1}_{i}(x), \end{align}
(1.16)\begin{align} \Theta& \geq(1-4\varepsilon-\varepsilon^{2})u^{p-1}_{i}(y)-\frac{C(p)}{\varepsilon^{p-2}}u^{p-1}_{i}(x). \end{align}

Case 3. Consider the case when $p>3$ is not an integer. On one hand, making use of (1.13), we obtain

(1.17)\begin{align} |u_{i}(x)-u_{i}(y)|^{p-2}& \leq(u_{i}(x)+u_{i}(y))^{[p-2]+(p-[p])}\nonumber\\ & \leq\left((1+\varepsilon)u^{[p-2]}_{i}(y)+\frac{C(p)}{\varepsilon^{[p-3]}}u^{[p-2]}_{i}(x)\right)\left(u^{p-[p]}_{i}(y)+u_{i}^{p-[p]}(x)\right)\nonumber\\ & = (1+\varepsilon)u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{[p-3]}}u^{p-[p]}_{i}(y)u^{[p-2]}_{i}(x)\nonumber\\ & \quad+(1+\varepsilon)u^{[p-2]}_{i}(y)u^{p-[p]}_{i}(x)+\frac{C(p)}{\varepsilon^{[p-3]}}u^{p-2}_{i}(x). \end{align}

From Young's inequality, we deduce

(1.18)\begin{align} & \frac{C(p)}{\varepsilon^{[p-3]}}u^{p-[p]}_{i}(y)u^{[p-2]}_{i}(x)\leq\varepsilon u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{p-3}}u^{p-2}_{i}(x), \end{align}
(1.19)\begin{align} & (1+\varepsilon)u^{[p-2]}_{i}(y)u^{p-[p]}_{i}(x)\leq\varepsilon u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x). \end{align}

Substituting (1.18)–(1.19) into (1.17), it follows that

(1.20)\begin{equation} |u_{i}(x)-u_{i}(y)|^{p-2}-u^{p-2}_{i}(y)\leq3\varepsilon u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x). \end{equation}

On the other hand, using (1.13) again, we have

(1.21)\begin{align} u_{i}^{p-2}(y)& \leq(|u_{i}(y)-u_{i}(x)|+u_{i}(x))^{[p-2]+(p-[p])}\nonumber\\ & \leq\left((1+\varepsilon)|u_{i}(x)-u_{i}(y)|^{[p-2]}+\frac{C(p)}{\varepsilon^{[p-3]}}u^{[p-2]}_{i}(x)\right)\nonumber\\ & \quad\cdot\left(|u_{i}(x)-u_{i}(y)|^{p-[p]}+u^{p-[p]}_{i}(x)\right)\nonumber\\ & = (1+\varepsilon)|u_{i}(x)-u_{i}(y)|^{p-2}+\frac{C(p)}{\varepsilon^{[p-3]}}u^{[p-2]}_{i}(x)|u_{i}(x)-u_{i}(y)|^{p-[p]}\nonumber\\ & \quad+(1+\varepsilon)u^{p-[p]}_{i}(x)|u_{i}(x)-u_{i}(y)|^{[p-2]}+\frac{C(p)}{\varepsilon^{[p-3]}}u^{p-2}_{i}(x). \end{align}

It follows from Young's inequality that

(1.22)\begin{align} & \frac{C(p)}{\varepsilon^{[p-3]}}u^{[p-2]}_{i}(x)|u_{i}(x)-u_{i}(y)|^{p-[p]}\leq\varepsilon|u_{i}(x)-u_{i}(y)|^{p-2}+\frac{C(p)}{\varepsilon^{p-3}}u^{p-2}_{i}(x), \end{align}
(1.23)\begin{align} & (1+\varepsilon)u^{p-[p]}_{i}(x)|u_{i}(x)-u_{i}(y)|^{[p-2]}\leq\varepsilon|u_{i}(x)-u_{i}(y)|^{p-2}+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x). \end{align}

Combining (1.20)–(1.23), we deduce

\begin{align*} u_{i}^{p-2}(y)-|u_{i}(x)-u_{i}(y)|^{p-2}& \leq3\varepsilon|u_{i}(x)-u_{i}(y)|^{p-2}+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x)\nonumber\\ & \leq 3\varepsilon(1+3\varepsilon)u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x). \end{align*}

This, together with (1.20) again, gives that

(1.24)\begin{equation} \left|u_{i}^{p-2}(y)-|u_{i}(x)-u_{i}(y)|^{p-2}\right|\leq3\varepsilon(1+3\varepsilon)u^{p-2}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x). \end{equation}

In light of (1.24), it follows from Young's inequality that

(1.25)\begin{align} |\mathcal{K}_{2}|& \leq3\varepsilon(1+3\varepsilon)u^{p-2}_{i}(y)u_{i}(x)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-1}_{i}(x)\nonumber\\ & \leq\varepsilon u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-1}_{i}(x),\end{align}
(1.26)\begin{align} |\mathcal{K}_{3}|& \leq3\varepsilon(1+3\varepsilon)u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-2]}{p-[p]}}}u^{p-2}_{i}(x)u_{i}(y)\nonumber\\ & \leq\varepsilon(4+9\varepsilon) u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-1]}{p-[p]}}}u^{p-1}_{i}(x). \end{align}

Therefore, substituting (1.10) and (1.25)–(1.26) into (1.9), we derive

(1.27)\begin{align} \Theta& \leq(1+5\varepsilon+9\varepsilon^{2})u^{p-1}_{i}(y)+\frac{C(p)}{\varepsilon^{\frac{[p-1]}{p-[p]}}}u^{p-1}_{i}(x), \end{align}
(1.28)\begin{align} \Theta& \geq(1-6\varepsilon-9\varepsilon^{2})u^{p-1}_{i}(y)-\frac{C(p)}{\varepsilon^{\frac{[p-1]}{p-[p]}}}u^{p-1}_{i}(x). \end{align}

Observe that

(1.29)\begin{align} \lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\int_{B_{R}^{c}(0)}\frac{u_{i}^{p-1}(x)}{|x-y|^{n+\sigma p}}\,{\rm d}y& =u^{p-1}(x)\lim_{R\rightarrow\infty}\int_{B_{R}^{c}(0)}\frac{{\rm d}y}{|x-y|^{n+\sigma p}}\nonumber\\ & \leq u^{p-1}(x)\lim_{R\rightarrow\infty}\int_{B_{R-|x|}^{c}(x)}\frac{{\rm d}y}{|x-y|^{n+\sigma p}}=0. \end{align}

Since $\lim \limits _{R\rightarrow \infty }\lim \limits _{i\rightarrow \infty }\Psi _{i}(x,R)$ exists and is finite, it follows from (1.12), (1.15)–(1.16) and (1.27)–(1.29) that

\begin{align*} \lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\Psi_{i}(x,R)& \leq c_{n,\sigma p}(1+\varepsilon_{p}^{(1)})\liminf_{R\rightarrow\infty}\liminf_{i\rightarrow\infty}\int_{B^{c}_{R}(0)}\frac{u^{p-1}_{i}(y)}{|x-y|^{n+\sigma p}}\,{\rm d}y,\\ \lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\Psi_{i}(x,R)& \geq c_{n,\sigma p}(1-\varepsilon_{p}^{(2)})\limsup_{R\rightarrow\infty}\limsup_{i\rightarrow\infty}\int_{B^{c}_{R}(0)}\frac{u^{p-1}_{i}(y)}{|x-y|^{n+\sigma p}}\,{\rm d}y, \end{align*}

where

\begin{align*} \varepsilon_{p}^{(1)}& =\begin{cases} \varepsilon, & \text{if}\,2< p\leq3,\\ \varepsilon(3+\varepsilon), & \text{if}\,p>3\;\text{is an integer},\\ \varepsilon(5+9\varepsilon), & \text{if}\,p>3\;\text{is not an integer}, \end{cases}\\ \varepsilon^{(2)}_{p}& = \begin{cases} 2\varepsilon, & \text{if }\,2< p\leq3,\\ \varepsilon(4+\varepsilon), & \text{if }\,p>3\;\text{is an integer},\\ 3\varepsilon(2+3\varepsilon), & \text{if }\,p>3\;\text{is not an integer}. \end{cases} \end{align*}

Due to the fact that $R > > |x|+1$, we have

\[ \frac{(R-|x|)|y|}{R}\leq|y-x|\leq\frac{(R+|x|)|y|}{R},\quad\text{for }y\in B_{R}^{c}(0). \]

Hence, we deduce

\begin{align*} \lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\Psi_{i}(x,R)& \leq c_{n,\sigma p}(1+\varepsilon_{p}^{(1)})\liminf_{R\rightarrow\infty}\liminf_{i\rightarrow\infty}\int_{B^{c}_{R}(0)}\frac{u^{p-1}_{i}(y)}{|y|^{n+\sigma p}}\,{\rm d}y,\\ \lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\Psi_{i}(x,R)& \geq c_{n,\sigma p}(1-\varepsilon_{p}^{(2)})\limsup_{R\rightarrow\infty}\limsup_{i\rightarrow\infty}\int_{B^{c}_{R}(0)}\frac{u^{p-1}_{i}(y)}{|y|^{n+\sigma p}}\,{\rm d}y. \end{align*}

By virtue of the arbitrariness of $\varepsilon$ and $\{u_{i}\}$ is nonnegative, we obtain

\[ \lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\Psi_{i}(x,R)=c_{n,\sigma p}\lim_{R\rightarrow\infty}\lim_{i\rightarrow\infty}\int_{B^{c}_{R}(0)}\frac{u^{p-1}_{i}(y)}{|y|^{n+\sigma p}}\,{\rm d}y\geq0. \]

This, together with (1.8), yields that theorem 1.1 holds.

In order to show that the limit constant $\theta$ captured in theorem 1.1 may be positive, we consider a sequence of nonnegative functions in the following. Choose a smooth cut-off function $\eta$ satisfying that

(1.30)\begin{equation} \eta(t)\equiv0\ {\rm in}\ (-\infty,0], \eta(t)\equiv1\ {\rm in}\ [1,\infty) {\rm and}\ 0\leq\eta(t)\leq1\ {\rm in}\ [0,1]. \end{equation}

Then for any $0< s< t$ and $j\geq 1$, define

(1.31)\begin{equation} v_{j}(x):=j^{{-}s}w_{j}(R_{j}^{{-}1}x),\quad w_{j}(x):= \begin{cases} j^{s}+j^{t}\phi(x),\ \mathrm{in}\;B_{6},\\ (1-\psi(x))(j^{s}+j^{t}),\ \mathrm{in}\; B_{6}^{c}, \end{cases} \end{equation}

where $\phi (x)=\eta (|x|-3)$, and $\psi (x)=\eta (|x|-6)$, $R_{j}=j^{\frac {(t-s)(p-1)}{\sigma p}}\beta ^{\frac {1}{\sigma p}}$ with

(1.32)\begin{equation} \beta:=c_{n,\sigma p}\left(\int_{B_{4}\setminus B_{3}}\frac{\phi^{p-1}(y)}{|y|^{n+\sigma p}}\,{\rm d}y+\int_{B_{6}\setminus B_{4}}\frac{{\rm d}y}{|y|^{n+\sigma p}}+\int_{B_{6}^{c}}\frac{(1-\psi(y))^{p-1}}{|y|^{n+\sigma p}}\,{\rm d}y\right). \end{equation}

Example 1.2 Let $n\geq 1$, $p>2$ and $0<\sigma <1$. If condition (1.31) holds, then we obtain that $v_{j}$ converges to $1$ in $C^{2}_{loc}(\mathbb {R}^{n})$, and

\[ \lim_{i\rightarrow\infty}(-\Delta)^{\sigma}_{p}v_{j}(x)={-}1. \]

Remark 1.3 We here would like to point out that the examples constructed in example 1.2 and theorem 2.1 were first given in [Reference Du, Jin, Xiong and Yang11].

Proof. It is easily seen from (1.31) that $v_{j}\in C_{c}^{\infty }(\mathbb {R}^{n})$, $v_{j}\geq 0$ in $\mathbb {R}^{n}$, $v_{j}=1$ in $B_{R_{j}}$, and $\|v_{j}-1\|_{C^{2}_{loc}}\rightarrow 0$, as $i\rightarrow \infty$. A direct computation gives that

(1.33)\begin{equation} (-\Delta)^{\sigma}_{p}v_{j}(x)=j^{{-}s(p-1)}R_{j}^{-\sigma p}(-\Delta)^{\sigma}_{p}w_{j}(R_{j}^{{-}1}x),\quad\text{for $x\in B_{R_{j}}$}. \end{equation}

For any fixed $x\in \mathbb {R}^{n}$, we have

\begin{align*} & j^{{-}t(p-1)}(-\Delta)^{\sigma}_{p}w_{j}(R_{j}^{{-}1}x)\\ & ={-}c_{n,\sigma p}\int_{B_{4}\setminus B_{3}}\frac{\phi^{p-1}(y)}{|R_{j}^{{-}1}x-y|^{n+\sigma p}}\,{\rm d}y-c_{n,\sigma p}\int_{B_{6}\setminus B_{4}}\frac{{\rm d}y}{|R_{j}^{{-}1}x-y|^{n+\sigma p}}\\ & \quad+\frac{c_{n,\sigma p}}{j^{t-s}}\int_{B_{6}^{c}}\frac{\psi(y)|\psi(y)-1+\psi(y)j^{-(t-s)}|^{p-2}}{|R_{j}^{{-}1}x-y|^{n+\sigma p}}\,{\rm d}y\\ & \quad-c_{n,\sigma p}\int_{B_{6}^{c}}\frac{(1-\psi(y))|\psi(y)-1+\psi(y)j^{-(t-s)}|^{p-2}}{|R_{j}^{{-}1}x-y|^{n+\sigma p}}\,{\rm d}y\\ & \quad\rightarrow-\beta,\quad\text{as}\ j\ {\rm goes\ to}\ \infty, \end{align*}

where $\beta$ is defined by (1.32). This, together with (1.33), gives that

\[ \lim_{j\rightarrow\infty}(-\Delta)^{\sigma}_{p}v_{j}(x)=\beta^{{-}1}\lim_{j\rightarrow\infty}j^{{-}t(p-1)}(-\Delta)^{\sigma}_{p}w_{j}(R_{j}^{{-}1}x)={-}1,\quad\text{in $\mathbb{R}^{n}$}. \]

The proof is complete.

2. Blow-up analysis for the extended fractional Nirenberg problem

The extended fractional Nirenberg problem is equivalent to investigating the following equation:

(2.1)\begin{equation} (-\Delta)^{\sigma}_{p}u(x)=K(x)u^{q(p-1)}(x),\quad\text{for}\ x\in\mathbb{R}^{n}, \end{equation}

where $p\geq 2$ and $q\in \mathbb {R}$. It has been shown in [Reference Du, Jin, Xiong and Yang11] that there arises blow-up phenomena for the linear fractional Laplacian due to the nonzero constant $\theta$ captured in theorem 1.1. Specially, for $p=2$, the compactness of solutions to (2.1) will fail in the region where $K$ is negative. In the following, we follow the proof of theorem 1.3 in [Reference Du, Jin, Xiong and Yang11] and extend the result to the nonlinear case of $p>2$. On the other hand, when $K$ is positive, Jin et al. [Reference Jin, Li and Xiong12Reference Jin, Li and Xiong14] derived a priori estimates for the fractional equation (2.1) with $p=2$.

While these above-mentioned works are related to the fractional Nirenberg problem, there is another direction of research to study the classical elliptic equation $-\Delta u=K(x)u^{p}$. When $n=1,2$ and $1< p<\infty$, or $n\geq 3$ and $1< p<\frac {n+2}{n-2}$, $p$ is called a subcritical Sobolev exponent, while it is the critical Sobolev exponent if $n\geq 3$ and $p=\frac {n+2}{n-2}$. In particular, the elliptic equation in the case of critical Sobolev exponent corresponds to the Nirenberg problem, which is to seek a new metric conformal to the flat metric on $\mathbb {R}^{n}$ so that its scalar curvature is $K(x)$. Generally, it needs to establish priori estimates of the solutions for the purpose of obtaining the existence of solutions. We refer to [Reference Gidas and Spruck9, Reference Gidas and Spruck10] for the subcritical case. With regard to the critical case, see [Reference Chang, Gursky and Yang5, Reference Li15, Reference Schoen and Zhang17] for positive functions $K$ and [Reference Chen and Li6, Reference Lin16, Reference Zhu18] for $K$ changing signs, respectively.

Theorem 2.1 Assume that $n\geq 1$, $p>2$, $0<\sigma <1$, $q\in \mathbb {R}$ and $s>-\frac {\sigma p}{p-1}$. Then there exist two positive constants $c_{0}=c_{0}(n,\sigma,p,q,s)$ and $C_{0}=C_{0}(n,\sigma,p,q,s)$, a sequence of functions $\{K_{j}\}\subset C^{\infty }(\mathbb {R}^{n})$ satisfying

\[{-}C_{0}\leq K_{j}(x)\leq{-}c_{0},\;\,c_{0}\leq|\nabla K_{j}(x)|\leq C_{0},\;\text{and}\;|\nabla^{2}K_{j}(x)|\leq C_{0},\quad\text{in}\ B_{2}, \]

and a sequence of positive functions $\{u_{j}\}\subset C^{\infty }(\mathbb {R}^{n})$ such that

\[ (-\Delta)^{\sigma}_{p}u_{j}(x)=K_{j}(x)u_{j}^{q(p-1)}(x),\ \text{for}\ x\in\mathbb{R}^{n},\quad|x|^{s}u_{j}(x)\rightarrow1,\quad\text{as}\ |x|\rightarrow\infty, \]

and

\[ \min\limits_{\overline{B}_{1}}u_{j}\rightarrow\infty,\quad\text{as}\ j\rightarrow\infty. \]

Proof. Let $\eta$ and $\phi$ be defined in (1.30) and (1.31). For $q\in \mathbb {R}$ and $s>-\frac {\sigma p}{p-1}$, let

\[ u_{j}(x)=\begin{cases} j+j^{q}\phi(x), & \mathrm{in}\;B_{R},\\ (1-\varphi(x))(j+j^{q})+\varphi(x)|x|^{{-}s}, & \mathrm{in}\;B_{R}^{c}, \end{cases} \]

where $\varphi (x)=\eta (|x|-R)$ and $R=R(n,p,q,\sigma,s,j)>9$ is a sufficiently large constant to be determined later. Then $u_{j}\in C^{\infty }(\mathbb {R}^{n})\cap \mathcal {L}_{\sigma p}(\mathbb {R}^{n})$ and $u_{j}>0$ in $\mathbb {R}^{n}$. Denote

\[ K_{j}(x):=\frac{(-\Delta)^{\sigma}_{p}u_{j}(x)}{u_{j}^{q(p-1)}(x)},\quad\text{in}\ \mathbb{R}^{n}. \]

Then $K_{j}\in C^{\infty }(\mathbb {R}^{n})$. Moreover, $\{K_{j}\}$ satisfies the following properties: there exists four positive constants $C_{i}:=C_{i}(n,\sigma,p)$, $i=1,2,3,4$, such that for every $j\geq 1$,

  1. (K1) $-C_{1}\leq K_{j}(x)\leq -C_{2}$, and $\sum \limits ^{3}_{i=1}|\nabla ^{i}K_{j}(x)|\leq C_{3}$ in $B_{2}$;

  2. (K2) $\nabla ^{2}K_{j}(0)\leq -C_{4}\mathbf {I}_{n}$, where $\mathbf {I}_{n}$ denotes $n\times n$ identity matrix.

We first prove $(\mathbf {K1})$. Observe that

(2.2)\begin{align} c_{n,\sigma p}^{{-}1}K_{j}(x)& ={-}\int_{B_{4}\setminus B_{3}}\frac{\phi^{p-1}(y)}{|x-y|^{n+\sigma p}}\,{\rm d}y-\int_{B_{R}\setminus B_{4}}\frac{{\rm d}y}{|x-y|^{n+\sigma p}}\nonumber\\ & \quad+\int_{B_{R}^{c}}\frac{|\mathcal{A}_{\varphi}(y)|^{p-2}\mathcal{A}_{\varphi}(y)}{|x-y|^{n+\sigma p}}\,{\rm d}y:=\sum^{3}_{i=1}J_{i}, \end{align}

where $\mathcal {A}_{\varphi }(y):=\varphi (y)-1+j^{1-q}\varphi (y)-j^{-q}|y|^{-s}\varphi (y)$. For simplicity, let

\begin{align*} \gamma& :=\gamma(n,\sigma,p)=\int_{B_{1}^{c}}\frac{{\rm d}y}{|y|^{n+\sigma p}}=\frac{|\mathbb{S}^{n-1}|}{\sigma p},\\ \tau:=& \tau(n,\sigma,p,s)=\int_{B_{1}^{c}}\frac{{\rm d}y}{|y|^{n+\sigma p+s(p-1)}}=\frac{|\mathbb{S}^{n-1}|}{\sigma p+s(p-1)}. \end{align*}

A straightforward computation yields that

\[ 0\geq J_{1}\geq{-}\int_{B_{1}(x)^{c}}\frac{{\rm d}y}{|x-y|^{n+\sigma p}}={-}\gamma, \]

and

\[ -\gamma\leq J_{2}\leq{-}\int_{B_{R-2}\setminus B_{6}}\frac{{\rm d}y}{|y|^{n+\sigma p}}={-}(6^{-\sigma p}-(R-2)^{-\sigma p})\gamma. \]

For $x\in B_{2}$, $y\in B_{R}^{c}$, we have $|x-y|\geq |y|/2$ in virtue of $R>9$. Then

\begin{align*} |J_{3}|& \leq2^{(\sigma+1)p+n-2}\int_{B_{R}^{c}}\frac{(1+j^{1-q})^{p-1}+j^{{-}q(p-1)}|y|^{{-}s(p-1)}}{|y|^{n+\sigma p}}\,{\rm d}y\\ & = 2^{(\sigma+1)p+n-2}\gamma(1+j^{1-q})^{p-1}R^{-\sigma p}+2^{(\sigma+1)p+n-2}\tau j^{{-}q(p-1)}R^{-\sigma p-s(p-1)}. \end{align*}

For a sufficiently large $R>9$, we have

\[ (R-2)^{-\sigma p}\gamma+2^{(\sigma+1)p+n-2}R^{-\sigma p}\left(\gamma(1+j^{1-q})^{p-1}+\tau j^{{-}q(p-1)}R^{{-}s(p-1)}\right)\leq\frac{\gamma6^{-\sigma p}}{2}, \]

which implies that

\[{-}3c_{n,\sigma p}\gamma\leq K_{j}(x)\leq{-}\frac{c_{n,\sigma p}\gamma6^{-\sigma p}}{2},\quad\forall\;x\in B_{2},\;j\geq1. \]

Furthermore, after differentiating (2.2), it follows from a similar calculation that

\[ \sum^{3}_{i=1}|\nabla^{i}K_{j}(x)|\leq C(n,\sigma,p),\quad\text{for}\ x\in B_{2},\;j\geq1. \]

We proceed to verify property $(\bf {K2})$. A simple calculation shows that for $y\in B_{3}^{c}$,

(2.3)\begin{equation} \partial_{x_{k}x_{l}}^{2}\left(\frac{1}{|x-y|^{n+\sigma p}}\right)(0)=\frac{(n+\sigma p)[(n+\sigma p+2)y_{k}y_{l}-\delta_{kl}|y|^{2}]}{|y|^{n+\sigma p+4}}. \end{equation}

Since the integral domain is symmetric, then we see from (2.2) to (2.3) that

\[ \partial^{2}_{x_{k}x_{l}}K_{j}(0)=0,\quad\text{for}\ k\neq l. \]

If $k=l$, it follows from the radial symmetry of $\phi$ and $\varphi$ that

\begin{align*} & [(n+\sigma p)c_{n,\sigma p}]^{{-}1}\partial^{2}_{x_{k}x_{k}}K_{j}(0)\\ & ={-}\frac{\sigma p+2}{n}\left(\int_{B_{4}\setminus B_{3}}\frac{\phi^{p-1}(y)}{|y|^{n+\sigma p+2}}\,{\rm d}y+\int_{B_{R}^{c}}\frac{|\mathcal{A}_{\varphi}(y)|^{p-2}(j^{1-q}\varphi(y)-\mathcal{A}_{\varphi}(y))}{|y|^{n+\sigma p+2}}\,{\rm d}y\right)\\ & \quad-\frac{\sigma p+2}{n}\left(\int_{B_{R}\setminus B_{4}}\frac{{\rm d}y}{|y|^{n+\sigma p+2}}-j^{1-q}\int_{B_{R}^{c}}\frac{|\mathcal{A}_{\varphi}(y)|^{p-2}\varphi(y)}{|y|^{n+\sigma p+2}}\,{\rm d}y\right)\\ & \leq{-}|B_{1}|\left(4^{-(\sigma p+2)}-R^{-(\sigma p+2)}-3j^{1-q}R^{-(\sigma p+2)}\right)\\ & \leq{-}|B_{1}|4^{-(\sigma p+3)},\quad\text{for a sufficiently large}\ R>9, \end{align*}

where we used the fact that $|\mathcal {A}_{\varphi }(y)|^{p-2}\varphi (y)\leq 3$ in $B_{R}^{c}$. That is, property $(\bf {K2})$ holds.

From the radial symmetry of $u_{j}$ with respect to the origin, we know that $K_{j}$ is also radially symmetric. Then we have

\[ \nabla K_{j}(0)=0, \]

which, together with $(\bf {K1})$$(\bf {K2})$, leads to that for $j\geq 1$,

(2.4)\begin{equation} |\nabla K_{j}(x)|\geq c_{1},\quad\text{in}\ B_{2\varepsilon_{0}}(4\varepsilon_{0}e_{1}), \end{equation}

where $e_{1}=(1,0,...,0)\in \mathbb {R}^{n}$, $\varepsilon _{0}:=\varepsilon _{0}(n,p,\sigma )\in (0,1/4)$ is a small constant and $c_{1}:=c_{1}(n,p,\sigma )$ is a positive constant.

Define

\[ \bar{u}_{j}(x):=\varepsilon_{0}^{s}u_{j}(\varepsilon_{0}(x+4e_{1})),\quad\mathrm{and}\ \bar{K}_{j}(x):=\varepsilon_{0}^{\sigma p-s(p-1)(q-1)}K_{j}(\varepsilon_{0}(x+4e_{1})). \]

Therefore,

\[ (-\Delta)^{\sigma}_{p}\bar{u}_{j}=\bar{K}_{j}(x)\bar{u}_{j}^{q(p-1)},\quad\text{for}\ x\in\mathbb{R}^{n}. \]

Then combining $(\bf {K1})$ and (2.4), we obtain

\[ -\bar{C}\leq \bar{K}_{j}(x)\leq{-}\bar{c},\;\,\bar{c}\leq|\nabla \bar{K}_{j}(x)|\leq \bar{C},\ \text{and}\ |\nabla^{2}\bar{K}_{j}(x)|\leq \bar{C},\quad\text{in}\ B_{2}, \]

where $\bar {c}=\bar {c}(n,\sigma,p,q,s)$ and $\bar {C}=\bar {C}(n,\sigma,p,q,s)$. Moreover, recalling the definition of $u_{j}$, we have

\[ \lim_{|x|\rightarrow\infty}|x|^{s}\bar{u}_{j}=1,\quad\text{and}\ \min_{\overline{B}_{1}}\bar{u}_{j}=\varepsilon_{0}^{s}j\rightarrow\infty,\quad\text{as}\ j\rightarrow\infty. \]

The proof is finished.

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Acknowledgements

The author thanks Professor C. X. Miao for his constant encouragement and useful discussions. The author was partially supported by CPSF (2021M700358).

Conflict of interest

None.

References

Applebaum, D.. Lévy processes—from probability to finance and quantum groups. Not. Am. Math. Soc. 51 (2004), 13361347.Google Scholar
Applebaum, D.. Lévy processes and stochastic calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116 (Cambridge: Cambridge University Press, 2009).Google Scholar
Bertoin, J.. Lévy processes. Cambridge Tracts in Mathematics, vol. 121 (Cambridge: Cambridge University Press, 1996).Google Scholar
Caffarelli, L. A. and Vasseur, A.. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171 (2010), 19031930.Google Scholar
Chang, S.-Y. A., Gursky, M. J. and Yang, P. C.. The scalar curvature equation on $2$- and $3$-spheres. Calc. Var. Partial Differ. Equ. 1 (1993), 205229.Google Scholar
Chen, W. X. and Li, C. M.. A priori estimates for prescribing scalar curvature equations. Ann. Math. 145 (1997), 547564.Google Scholar
Chen, W. X., Li, Y. and Ma, P.. The fractional Laplacian (Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2020).Google Scholar
Constantin, P.. Euler equations, Navier-Stokes equations and turbulence. Mathematical foundation of turbulent viscous flows. Lecture Notes in Math., vol. 1871, pp. 1–43 (Berlin: Springer, 2006).Google Scholar
Gidas, B. and Spruck, J.. Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34 (1981), 525598.CrossRefGoogle Scholar
Gidas, B. and Spruck, J.. A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6 (1981), 883901.CrossRefGoogle Scholar
Du, X. S., Jin, T. L., Xiong, J. G. and Yang, H.. Blow up limits of the fractional Laplacian and their applications to the fractional Nirenberg problem. arXiv:2112.00960.Google Scholar
Jin, T. L., Li, Y. Y. and Xiong, J. G.. On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16 (2014), 11111171.CrossRefGoogle Scholar
Jin, T. L., Li, Y. Y. and Xiong, J. G.. On a fractional Nirenberg problem, part II: existence of solutions. Int. Math. Res. Not. 2015 (2015), 15551589.Google Scholar
Jin, T. L., Li, Y. Y. and Xiong, J. G.. The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369 (2017), 109151.Google Scholar
Li, Y. Y.. Prescribing scalar curvature on $\mathbb {S}^n$ and related problem. I. J. Differ. Equ. 120 (1995), 319410.Google Scholar
Lin, C.-S.. On Liouville theorem and a priori estimates for the scalar curvature equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 27 (1998), 107130.Google Scholar
Schoen, R. and Zhang, D.. Prescribed scalar curvature on the $n$-sphere. Calc. Var. Partial Differ. Equ. 4 (1996), 125.CrossRefGoogle Scholar
Zhu, M.. Liouville theorems on some indefinite equations. Proc. R. Soc. Edinb. Sect. A 129 (1999), 649661.Google Scholar