Published online by Cambridge University Press: 14 November 2011
We characterize direct products of finite monogenic inverse semigroups; we show that a finite monogenic inverse semigroup which is not a group is directly indecomposable and that a finite semigroup which is decomposable into a direct product of monogenic inverse semigroups which are not groups is uniquely so decomposable. We determine when a finite semigroup can be decomposed into a direct product of non-group monogenic inverse semigroups and show how the direct factors, if they exist, can be found.