Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T13:20:11.312Z Has data issue: false hasContentIssue false

Elliptic equations on manifolds and isoperimetric inequalities

Published online by Cambridge University Press:  14 November 2011

Andrea Cianchi
Affiliation:
Istituto Matematico “Ulisse Dini”, Viale Morgagni 67A, 50134 Firenze, Italy

Synopsis

We consider linear and nonlinear elliptic equations in divergence form on Riemannian manifolds with or without boundary. In the former case we impose a homogeneous Neumann boundary condition. By making use of isoperimetric inequalities for manifolds, we obtain a priori sharp estimates for the decreasing rearrangement of the solutions to such equations. These estimates enable us to derive bounds for suitable norms of the solutions and of their gradients.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev spaces (New York: Academic Press, 1975).Google Scholar
2Bérard, P.. Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics 1207 (Berlin: Springer, 1986).CrossRefGoogle Scholar
3Bérard, P. and Meyer, D.. Inégalités isoperimétriqués et applications. Ann. Sci. École Norm. Sup. (4)15 (1982), 513542.CrossRefGoogle Scholar
4Cianchi, A.. On relative isoperimetric inequalities in the plane. Boll.Un. Mat. Hal. B (7) 3 (1989), 289325.Google Scholar
5Dinghas, A.. Einfacher Beweis der isoperimetrischen Eingenschaft der Kugelin Riemannschen Räumen konstanter Kriimmung. Math. Nachr. 2 (1949), 107113.CrossRefGoogle Scholar
6Gallot, S.. Inégalités isoperimétriques et analytiques sur les variétés riemanniennes. Colloque du C.N.R. (Roma 1986). Astérisque (to appear).Google Scholar
7Gromov, M.. Paul Levy's isoperimetric inequality (Preprint I.H.E.S., 1980).Google Scholar
8Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities (Cambridge: Cambridge University Press, 1964).Google Scholar
9Kamke, E., Differentialgleichungen Losungsmethoden und Losungen (Leipzig: Akademische Verlagsgesellschaft, 1943).Google Scholar
10Maderna, C. and Salsa, S.. A priori bounds in non-linear Neumann problems. Boll. Un. Mat. Hal. B (5) 16 (1979), 11441153.Google Scholar
11Maz'ja, V. G.. Sobolev spaces (Berlin: Springer, 1985).CrossRefGoogle Scholar
12Schmidt, E.. Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzhal. Math. Z. 49 (1943/1944), 1109.CrossRefGoogle Scholar
13Talenti, G.. Nonlinear Elliptic Equations, Rearrangements of Functions and Orlicz Spaces. Ann. Mat. PuraAppl. 120 (1979), 159184.CrossRefGoogle Scholar