Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T14:40:16.138Z Has data issue: false hasContentIssue false

Existence results for the Kudryashov–Sinelshchikov–Olver equation

Published online by Cambridge University Press:  01 April 2020

Giuseppe Maria Coclite
Affiliation:
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, via E. Orabona 4, 70125Bari, Italy (giuseppemaria.coclite@poliba.it)
Lorenzo di Ruvo
Affiliation:
Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125Bari, Italy (lorenzo.diruvo77@gmail.com)

Abstract

The Kudryashov–Sinelshchikov–Olver equation describes pressure waves in liquids with gas bubbles taking into account heat transfer and viscosity. In this paper, we prove the existence of solutions of the Cauchy problem associated with this equation.

Type
Research Article
Copyright
The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

1Abdel Kader, A. H., Abdel Latif, M. S. and Nour, H. M.. Some exact solutions of the Kudryashov-Sinelshchikov equation using point transformations. Int. J. Appl. Comput. Math. 5 (2019), 127.CrossRefGoogle Scholar
2Ayub, K., Yaqub Khan, M. and Ul Hassan, Q. M.. Some new exact solutions of a three-dimensional Kudryashov-Sinelshchikov equation in the bubbly liquid. J. Sci. Arts 1 (2017), 183194.Google Scholar
3Bruzón, M. S., Recio, E., de la Rosa, R. and Gandarias, M. L.. Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation. Math. Methods Appl. Sci. 41 (2018), 16311641.CrossRefGoogle Scholar
4Canosa, J. and Gazdag, J.. The Korteweg-de Vries-Burgers equation. J. Comput. Phys. 23 (1977), 393403.CrossRefGoogle Scholar
5Chen, C., Rui, W. and Long, Y.. Different kinds of singular and nonsingular exact traveling wave solutions of the Kudryashov-Sinelshchikov equation in the special parametric conditions. Math. Prob. Eng. (2013), 10.Google Scholar
6Coclite, G. M. and di Ruvo, L.. Convergence of the Ostrovsky Equation to the Ostrovsky-Hunter one. J. Differ. Equ. 256 (2014), 32453277.CrossRefGoogle Scholar
7Coclite, G. M. and di Ruvo, L.. Dispersive and diffusive limits for Ostrovsky-Hunter type equations. Nonlinear Differ. Equ. Appl. 22 (2015), 17331763.CrossRefGoogle Scholar
8Coclite, G. M. and di Ruvo, L.. A singular limit problem for the Kudryashov-Sinelshchikov equation. ZAMM Z. Angew. Math. Mech. 97 (2017), 10201033.CrossRefGoogle Scholar
9Coclite, G. M. and di Ruvo, L.. Well-posedness results for the continuum spectrum pulse equation. Mathematics 7 (2019), 1006, 39.CrossRefGoogle Scholar
10Coclite, G. M. and di Ruvo, L.. A singular limit problem for conservation laws related to the Rosenau equation. J. Abstr. Differ. Equ. Appl. 107 (2017), 315335.Google Scholar
11Coclite, G. M. and di Ruvo, L.. Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl. Math. 145 (2016), 89113.CrossRefGoogle Scholar
12Coclite, G. M. and di Ruvo, L., Classical solutions for an Ostrovsky type equation. To appear on Nonlinear Analysis: Real World Applications.Google Scholar
13Coclite, G. M. and di Ruvo, L., Wellposedness of the classical solutions for a Kawahara-Korteweg-deVries type equation. Submitted.Google Scholar
14Coclite, G. M. and Garavello, M.. A time dependent optimal harvesting problem with measure valued solutions. SIAM J. Control Optim. 55 (2017), 913935.CrossRefGoogle Scholar
15Coclite, G. M., Garavello, M. and Spinolo, L. V.. Optimal strategies for a time-dependent harvesting problem. Discrete Contin. Dyn. Syst. Ser. S 11 (2016), 865900.Google Scholar
16Craig, W. and Grove, M. D.. Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19 (1994), 367389.CrossRefGoogle Scholar
17Gupta, A. K. and Ray, S. S.. On the solitary wave solution of fractional Kudryashov-Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles. Appl. Math. Comput. 298 (2017), 112.Google Scholar
18He, Y.. New Jacobi elliptic function solutions for the Kudryashov-Sinelshchikov equation using improved F-expansion method. Math. Prob. Eng. 2013 (2013), 104894.Google Scholar
19He, Y., Li, S. and Long, Y.. Exact solutions of the Kudryashov-Sinelshchikov equation using the multiple G′/G expansion method. Math. Prob. Eng. 2013 (2013), 708049.Google Scholar
20He, Y., Li, S. and Long, Y.. A improved F-expansion method and its application to Kudryashov-Sinelshchikov equation. Math. Methods Appl. 37 (2013), 17171722.CrossRefGoogle Scholar
21He, B., Meng, Q. and Long, Y.. The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 41374148.CrossRefGoogle Scholar
22He, B., Meng, Q., Zhang, J. and Long, Y.. Periodic loop solutions and their limit forms for the Kudryashov-Sinelshchikov equation. Math. Prob. Eng. (2012), 10.Google Scholar
23Inc, M., Aliyu, A. I., Yusu, A. and Baleanu, D.. New solitary solution and conservation laws to the Kundryashov-Sinelshikov equation. Optik – Int. J. Light Electron Opt. 142 (2017), 665673.CrossRefGoogle Scholar
24Kichenassamy, S. and Oliver, P. J.. Existence and non existence of solitary wave solutions to Higher-oder model evolution equations. SIAM J. Math. Anal. 23 (1992), 11411166.CrossRefGoogle Scholar
25Kochanov, M. B. and Kudryashov, N. A.. Quasi-exact solutions of the equation fro description of nonlinear waves in a liquid with gas bubbles. Rep. Math. Phys. 74 (2014), 399408.CrossRefGoogle Scholar
26Korteweg, D. J. and de Vries, G.. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39 (1895), 422443.CrossRefGoogle Scholar
27Kudryashov, N. A. and Sinelshchikov, D. I.. Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer. Phys. Lett. A 374 (2010), 20112016.CrossRefGoogle Scholar
28LeFloch, P. G. and Natalini, R.. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 36, no. 2, Ser. A: Theory Methods 36 (1992), 212230.Google Scholar
29Li, J. and Chen, G.. Exact traveling wave solutions and their bifurcations for the Kudryashov-Sinelshchikov Equation. Int. J. Bifurcat. Chaos 22 (2012), 1250118.Google Scholar
30Lu, J.. New exact solutions for Kudryashov-Sinelshchikov equation. Adv. Differ. Equ. 2018 (2018), 374.CrossRefGoogle Scholar
31Muatjetjeja, B., Adem, A. R. and Mbusi, S. O.. Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation. J. Appl. Anal. 25 (2019), 211217.CrossRefGoogle Scholar
32Olver, P. J.. Hamiltonian perturbation theory and water waves. Contemp. Math. 28 (1984), 231249.CrossRefGoogle Scholar
33Ponce, G.. Lax pairs and higher order models for water waves. J. Differ. Equ. 102 (1993), 360381.CrossRefGoogle Scholar
34Randrüüt, M.. On the Kudryashov-Sinelshchikov equation for waves in bubbly liquids. Phys. Lett. A 375 (2011), 36873692.CrossRefGoogle Scholar
35Randrüüt, M. and Braun, M.. On identical traveling-wave solutions of the Kudryashov-Sinelshchikov and related equations. Int. J. Non Linear Mech. 58 (2014), 206211.CrossRefGoogle Scholar
36Ryabov, P. N.. Exact solutions of the Kudryashov-Sinelshchikov equation. Appl. Math. Comput. 217 (2010), 35853590.Google Scholar
37Rui, W., He, B., Long, Y. and Chen, C.. The integral bifurcation method and its application for solving a family of third order dispersive PDEs. Nonlinear Anal.: Theory Methods Appl. 69 (2008), 12561267.CrossRefGoogle Scholar
38Saha Ray, S. and Singh, S.. New exact solutions for the wick-type stochastic Kudryashov-Sinelshchikov equation. Commun. Theor. Phys. 67 (2017), 197206.Google Scholar
39Schonbek, M. E.. Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7 (1982), 9591000.Google Scholar
40Shu, J.. The proper analytical solution of the Korteweg-de Vries-Burgers equation. J. Phys. A - Math. Gen. 20 (1987), 4956.Google Scholar
41Simon, J.. Compact sets in the space L p(0, T;B). Ann. Mat. Pura Appl. 4 (1987), 6594.Google Scholar
42Tu, J.-M., Tian, S. F., Xu, M.-J. and Zhang, T.-T.. On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation. Appl. Math. Comput. 275 (2016), 345352.Google Scholar
43Weiguo, R., Yao, L., Bin, H. and Zhenyang, L.. Integral bifurcation method combined with computer for solving a higher order wave equation of KdV type. Int. J. Comput. Math. 87 (2010), 119128.CrossRefGoogle Scholar
44Yang, H.. Symmetry reductions and exact solutions to the Kudryashov-Sinelshchikov equation. Z. Naturforsch. 71 (2016), 10591065.CrossRefGoogle Scholar
45Yang, H., Liu, W, Yang, B. and He, B.. Lie symmetry analysis and exact explicit solutions of three-dimensional Kudryashov-Sinelshchikov equation. Commun. Nonlinear Sci. Numer. Simul. 27 (2015), 271280.CrossRefGoogle Scholar
46Yusuf, A. and Bayram, M.. Soliton solutions for Kudryashov-Sinelshchikov equation. Sigma J. Eng. Nat. Sci. 37 (2019), 439444.Google Scholar
47Zhao, Y. M.. F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation. J. Appl. Math. 2013 (2013), 17.Google Scholar
48Zhou, A. J. and Chen, A.. Exact solutions of the Kudryashov-Sinelshchikov equation in ideal liquid with gas bubbles. Phys. Scr. 93 (2018), 125201.CrossRefGoogle Scholar