Let $R$ be a commutative ring and $\mathfrak {m} \subseteq R$ an ideal such that $(R,\mathfrak {m})$ is a henselian pair. Standard examples include henselian local rings like valuation rings of complete nonarchimedean fields as well as pairs where $R$ is $\mathfrak {m}$-adically complete or where $\mathfrak {m}$ is locally nilpotent. We write $F = R/\mathfrak {m}$ and let $n$ be a natural number which is invertible in $R$. Then Gabber's rigidity theorem [Reference Gabber5] says that the canonical map
is an equivalence; this result was preceded by work of Suslin [Reference Suslin13] who showed this conclusion for henselian valuation rings. See also [Reference Clausen, Mathew and Morrow4] for an extension of this result, involving topological cyclic homology, to the case where $n$ need not be invertible in $R$ and a general discussion of henselian pairs. The purpose of this short note is to use the results of [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle2, Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3] as well as [Reference Harpaz, Nikolaus and Shah6] to show that Gabber's rigidity property also holds true for hermitian K-theory, a.k.a. Grothendieck–Witt theory.
To state the main result, let $\lambda$ be a form parameter over $R$ in the sense of [Reference Schlichting12, §3], see also [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1, definition 4.2.26]. In loc. cit. it is explained that such a form parameter $\lambda$ is equivalently described by a Poincaré structure ${\unicode{x03D9}} ^{\mathrm {g}\lambda }_R$ in the sense of [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1] on $\mathscr {D}^{\mathrm {p}}(R)$ which sends projective $R$-modules to discrete spectra. Here, $\mathscr {D}^{\mathrm {p}}(R)$ denotes the stable $\infty$-category of perfect complexes over $R$. We will assume that the $\mathbb {Z}$-module with involution over $R$ underlying the form parameter $\lambda$ is given by $\pm R$, that is, given by the $R$-module $R$ with $C_2$-action either the identity or multiplication by $-1$, viewed as an $R\otimes R$-module via the multiplication map. There is then an induced form parameter on $F$ whose associated Poincaré structure on $\mathscr {D}^{\mathrm {p}}(F)$ we will denote by ${\unicode{x03D9}} ^{\mathrm {g}\lambda }_F$, see remark 4 below for details. The construction is made so that the extension of scalars functor canonically refines to a Poincaré functor $(\mathscr {D}^{\mathrm {p}}(R),{\unicode{x03D9}} ^{\mathrm {g}\lambda }_R) \to (\mathscr {D}^{\mathrm {p}}(F),{\unicode{x03D9}} ^{\mathrm {g}\lambda }_F)$ and therefore a map on Grothendieck–Witt theory. Standard examples of form parameters capture the notion of quadratic, even and symmetric forms (as well as their skew-quadratic, skew-even and skew-symmetric cousins) with associated Poincaré structures ${\unicode{x03D9}} ^{\pm \mathrm {gq}}, {\unicode{x03D9}} ^{\pm \mathrm {ge}}$ and ${\unicode{x03D9}} ^{\pm \mathrm {gs}}$. A further example is provided by the Burnside Poincaré structure ${\unicode{x03D9}} ^\mathrm {b}$ whose L-theory was calculated explicitly for $\mathbb {Z}$ in [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, example 1.3.18] and whose $0$’th Grothendieck–Witt group was studied for commutative rings with 2 invertible in the PhD thesis of Dylan Madden [Reference Madden10]. With this notation fixed, we have the following result.
Theorem 1 Let $(R,\mathfrak {m})$ be a henselian pair, $F=R/\mathfrak {m}$ and let $n$ be a natural number invertible in $R$. Then the canonical map
is an equivalence.
Proof. The main result of [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle2] gives a diagram of horizontal fibre sequences
and by Gabber rigidity, the left vertical map becomes an equivalence after tensoring with $\mathbb {S}/n$. Therefore, the statement of the theorem is equivalent to the statement that the map
is an equivalence. We then consider the diagram
where ${\unicode{x03D9}} ^{\mathrm {q}}_{\pm R}$ denotes the homotopy quadratic Poincaré structure associated with the invertible module with involution $\pm R$ which is part of the form parameter $\lambda$, and likewise for ${\unicode{x03D9}} ^{\mathrm {q}}_{\pm F}$. We now observe that the formula for relative L-theory obtained in [Reference Harpaz, Nikolaus and Shah6] shows that the top and bottom horizontal cofibres are $\mathbb {S}[\tfrac {1}{n}]$-modules.
Indeed, [Reference Harpaz, Nikolaus and Shah6] shows that the cofibre of the top horizontal arrow is a filtered colimit of objects of the form
for $T \in \mathscr {D}^{\mathrm {p}}(R)$, the bottom horizontal cofibre is described similarlyFootnote 1. Since $\mathrm {map}_{R}(T\otimes _R T,R)$ is canonically an $R$-module and $n$ is invertible in $R$, it is also an $\mathbb {S}\left [\tfrac {1}{n}\right ]$-module. Moreover, since $\mathrm {Mod}\left (\mathbb {S}\left [\tfrac {1}{n}\right ]\right ) \subseteq \mathrm {Sp}$ is a full subcategory closed under colimits and limits, both terms in the equalizer, and therefore also the equalizer itself belong to $\mathrm {Mod}\left (\mathbb {S}\left [\tfrac {1}{n}\right ]\right )$. Consequently, the horizontal maps in the above diagram become equivalences upon tensoring with $\mathbb {S}/n$. The statement of the main theorem is therefore equivalent to the statement that the left vertical map in the above commutative square is an equivalence. This is a consequence of the work of Wall's [Reference Wall14] as explained in [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, prop. 2.3.7 and remark 2.3.8].
Remark 2 Restricting the situation above to form parameters rather than general Poincaré structures on $\mathscr {D}^{\mathrm {p}}(R)$ was merely a cosmetic choice to obtain a result about classical Grothendieck–Witt theory: Indeed, it is again a consequence of the main theorem of [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle2] that the diagram
is a pullback diagram for any Poincaré structure ${\unicode{x03D9}}$ on $\mathscr {D}^{\mathrm {p}}(R)$ whose $\mathbb {Z}$-module with involution over $R$ is given by $\pm R$. The proof presented above therefore shows that for any ring $R$ in which $n$ is invertible, the canonical map
is an equivalence so that Gabber rigidity also holds for the Poincaré structure ${\unicode{x03D9}}$.
In particular, Gabber rigidity also applies to the homotopy symmetric Poincaré structure ${\unicode{x03D9}} ^{\pm \mathrm {s}}$ as well as the Tate Poincaré structure ${\unicode{x03D9}} ^{\mathrm {t}}_R$, see [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1, example 3.2.12].
Remark 3 Rigidity in hermitian K-theory has of course been studied in several works before, see for instance [Reference Hornbostel and Yagunov7–Reference Karoubi9, Reference Yagunov15] for the case of rings with involution. The main purpose here is to show how to use the formalism of Poincaré categories and the main result of [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle2] to reduce rigidity in hermitian K-theory to rigidity in algebraic K-theory and L-theory in a way that allows to treat general form parameters.
Remark 4 In this remark, we describe how extension of scalars can be used to prolong a form parameter over $R$ along a map $R \to R'$ of rings. It is here that the assumption on the underlying module with involution is used. Indeed, we will describe a general construction on Hermitian structures, and the assumption is used to ensure that the given Poincaré structure is sent to a Poincaré structure rather than merely a Hermitian structure.
Namely, in [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1, §3.3], we have shown that the category of Hermitian structures on $\mathscr {D}^{\mathrm {p}}(R)$ is equivalent to the category $\mathrm {Mod}_{\mathrm {N}(R)}(\mathrm {Sp}^{C_2}) = \mathrm {Mod}(\mathrm {N}(R))$, that is, the category of modules over the multiplicative normFootnote 2 $\mathrm {N}(R)$ in the category $\mathrm {Sp}^{C_2}$ of genuine $C_2$-spectra. Moreover, the category $\mathrm {Mod}(\mathrm {N}(R))$ is equipped with a canonical $t$-structure whose heart is equivalent to the category of (possibly degenerate) form parameters over $R$, see [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1, remark 4.2.27]. Objects in $\mathrm {Mod}(\mathrm {N}(R))$ are described by triples $(M,N, \alpha )$ where
– $M$ is an object of $\mathrm {Mod}_{R\otimes R}(\mathrm {Sp}^{BC_2})$, where $R\otimes R$ is an algebra in spectra with $C_2$-action where the action flips the two tensor factors,
– $N$ is an object of $\mathrm {Mod}(R)$ and
– $\alpha$ is a map $N \to M^{tC_2}$ of $R$-modules,
see [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1]; the Poincaré structures then consist of the above triples where $M$ is invertible in the sense of [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1, def. 3.1.4]. We warn the reader that caution has to be taken in regards to how $M^{tC_2}$ is to be viewed as an $R$-module, see e.g. [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, p. 7] for the details. An object $(M,N, \alpha )$ is connective in the canonical $t$-structure on $\mathrm {Mod}(\mathrm {N}(R))$ if and only if $M$ and $N$ are connective.
The Poincaré structure associated with the triple $(M,N,\alpha )$ is denoted by ${\unicode{x03D9}} ^\alpha _M$. Assuming that $M$ is in the image of the canonical functor $\mathrm {Fun}(BC_2,\mathrm {Mod}(R)) \to \mathrm {Mod}_{R\otimes R}(\mathrm {Fun}(BC_2,\mathrm {Sp}))$, the triple
gives rise to a Poincaré structure on $\mathscr {D}^{\mathrm {p}}(R')$ for which the extension of scalar functor canonically refines to a Poincaré functor $(\mathscr {D}^{\mathrm {p}}(R),{\unicode{x03D9}} ^\alpha _M) \to (\mathscr {D}^{\mathrm {p}}(R'),{\unicode{x03D9}} ^{\alpha '}_{M'})$, see [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle1, lemma 3.4.3]. Now, if $(M,N,\alpha )$ was associated with a form parameter, then the same need not be true for the triple $(M',N',\alpha ')$: Indeed, this is the case if and only if ${\unicode{x03D9}} ^{\alpha '}_{M'}(R')$ is a discrete spectrum which in general need not be the case (but by construction it is always a connective spectrum). However, we may consider the composite
and denote its cofibre by $N''$. The pushout diagram of spectra
and the fact that $(M')^{hC_2}$ is coconnective shows that there is a canonical map $\alpha ''\colon N'' \to (M')^{tC_2}$. By construction, the triple $(M', N'', \alpha '')$ is an object of $\mathrm {Mod}(\mathrm {N}(R'))^{\heartsuit }$ and in fact identifies with $\tau _{\leq 0}(M',N',\alpha ')$. This object determines a Poincaré structure ${\unicode{x03D9}} ^{\mathrm {g}\lambda '}$ associated with a form parameter $\lambda '$ over $R'$ for which the extension of scalars functor refines to a Poincaré functor
To give an example of this construction, we recall the genuine Poincaré structures ${\unicode{x03D9}} ^{\geq m}_{\pm R}$ which, for $m=0,1,2$ are the Poincaré structures ${\unicode{x03D9}} ^{\mathrm {gq}}_{\pm R}$, ${\unicode{x03D9}} ^{\mathrm {ge}}_{\pm R}$ and ${\unicode{x03D9}} ^{\mathrm {gs}}_{\pm R}$ associated with the classical (skew-) quadratic, even and symmetric form parameter over $R$, respectively, see [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, remark R.3 and R.5]. In this case, the extension of scalars functor associated with a ring map $R \to R'$ indeed sends ${\unicode{x03D9}} ^{\geq m}_{\pm R}$ to ${\unicode{x03D9}} ^{\geq m}_{\pm R'}$.
Remark 5 For the Poincaré structures ${\unicode{x03D9}} ^{\geq m}_{\pm R}$ one can give the following argument that the map
is an equivalence without appealing to the general formula for relative L-theory of [Reference Harpaz, Nikolaus and Shah6]. Namely, in [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, prop. 3.1.14] we have shown that the map
is an equivalence for all $m \in \mathbb {Z}$. Therefore, the proof of the theorem applies in the case where 2 does not divide $n$. In the case where $2$ divides $n$, we deduce that $2$ is invertible in $R$ in which case already the map ${\unicode{x03D9}} ^{\mathrm {q}}_{\pm R} \to {\unicode{x03D9}} ^{\geq m}_{\pm R}$ is an equivalence of Poincaré structures, see [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, remark R.4].
Remark 6 Suppose that $R$ is an associative ring which is $\mathfrak {m}$-adically complete for an ideal $\mathfrak {m} \subset R$. Then the result of Wall, see again [Reference Calmés, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle3, prop. 2.3.7], says that the map $\mathrm {L}^{\pm \mathrm {q}}(R) \to \mathrm {L}^{\pm \mathrm {q}}(R/\mathfrak {m})$ is an equivalence. To the best of our knowledge, it is not known whether also the map $K(R)/n \to K(R/\mathfrak {m})/n$ is an equivalence. However, if it is, this argument shows that the same is true for Grothendieck–Witt theory and vice versa.
Acknowledgements
The author was supported by the Danish National Research Foundation through the Copenhagen Centre for Geometry and Topology (DNRF151).