Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T09:33:30.657Z Has data issue: false hasContentIssue false

Generalized minimizer solutions for equations with the $p$-Laplacian and a potential term

Published online by Cambridge University Press:  05 February 2008

Peter Takáč
Affiliation:
Institut für Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany (peter.takac@mathematik.uni-rostock.de)
Kyril Tintarev
Affiliation:
Matematiska Institutionen, Uppsala Universitet, Box 480, 75106 Uppsala, Sweden (kyril.tintarev@math.uu.se)

Abstract

Let $\varOmega$ be a domain in $\mathbb{R}^N$ (possibly unbounded), $N\geq2$, $1<p<\infty$, and let $V\in L_{\mathrm{loc}}^\infty(\varOmega)$. Consider the energy functional $\mathcal{Q}_V$ on $C_{\mathrm{c}}^\infty(\varOmega)$ and its Gâteaux derivative $\mathcal{Q}_V^\prime$, respectively, given by

$$ \mathcal{Q}_V(u)\eqdef\frac{1}{p}\int_\varOmega(|\nabla u|^p+V|u|^p)\,\mathrm{d} x,\qquad\mathcal{Q}_V^\prime(u)= \mathrm{div}(|\nabla u|^{p-2}\nabla u)+V|u|^{p-2}u, $$

for $u\in C_{\mathrm{c}}^\infty(\varOmega)$. Assume that $\mathcal{Q}_V>0$ on $C_{\mathrm{c}}^{\infty}(\varOmega)\setminus\{0\}$ and that $\mathcal{Q}_V$ does not have a ground state (in the sense of a null sequence for $\mathcal{Q}_V$ that converges in $L_{\mathrm{loc}}^p(\varOmega)$ to a positive function $\varphi\in C_{\mathrm{loc}}^1(\varOmega)$, a ground state). Finally, let $f\in\mathcal{D}^\prime(\varOmega)$ be such that the functional $u\mapsto \mathcal{Q}_V(u)-\langle u,f\rangle:C_{\mathrm{c}}^\infty(\varOmega)\to\mathbb{R}$ is bounded from below. Then the equation

$$ \mathcal{Q}_V^\prime(u)=f $$

has a solution $u_0\in W^{1,p}_{\mathrm{loc}}(\varOmega)$ in the sense of distributions. This solution also minimizes the functional $u\mapsto\mathcal{Q}_V^{**}(u)-\langle u,f\rangle:C_{\mathrm{c}}^\infty(\varOmega)\to \mathbb{R}$, where $\mathcal{Q}_V^{**}$ denotes the bipolar ($\varGamma$-regularization) of $\mathcal{Q}_V$ and $\mathcal{Q}_V^{**}$ is the largest convex, weakly lower semicontinuous functional on $C_{\mathrm{c}}^\infty(\varOmega)$ that satisfies $\mathcal{Q}_V^{**}\leq\mathcal{Q}_V$. (The original energy functional $\mathcal{Q}_V$ is not necessarily convex.)

Type
Research Article
Copyright
2008 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)