Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:41:10.957Z Has data issue: false hasContentIssue false

Globally subanalytic CMC surfaces in ℝ3 with singularities

Published online by Cambridge University Press:  30 March 2020

José Edson Sampaio*
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, 60440-900, Fortaleza, CE, Brazil BCAM – Basque Center for Applied Mathematics, Mazarredo, 14 E48009Bilbao, Basque Country, Spain (edsonsampaio@mat.ufc.br)

Abstract

In this paper we present a classification of a class of globally subanalytic CMC surfaces in ℝ3 that generalizes the recent classification made by Barbosa and do Carmo in 2016. We show that a globally subanalytic CMC surface in ℝ3 with isolated singularities and a suitable condition of local connectedness is a plane or a finite union of round spheres and right circular cylinders touching at the singularities. As a consequence, we obtain that a globally subanalytic CMC surface in ℝ3 that is a topological manifold does not have isolated singularities. It is also proved that a connected closed globally subanalytic CMC surface in ℝ3 with isolated singularities which is locally Lipschitz normally embedded needs to be a plane or a round sphere or a right circular cylinder. A result in the case of non-isolated singularities is also presented. It also presented some results on regularity of semialgebraic sets and, in particular, it proved a real version of Mumford's Theorem on regularity of normal complex analytic surfaces and a result about C1 regularity of minimal varieties.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alexandrov, A.. A characteristic property of spheres. Ann. Mat. Pura Appl. 58 (1962), 303315.CrossRefGoogle Scholar
2Barbosa, J. L. M. and do Carmo, M. P.. On regular algebraic surfaces of ℝ3 with constant mean curvature. J. Differ. Geom. 102 (2016), 173178.CrossRefGoogle Scholar
3Barbosa, J. L., Birbrair, L., do Carmo, M. and Fernandes, A.. Globally subanalytic CMC surfaces in R 3. Electron. Res. Announc. 21 (2014), 186192.Google Scholar
4Bernstein, S.. Sur un théorème de géomètrie et ses applications aux équations aux dérivées partielle du type elliptique. Comm. de la Soc. Math de Kharkov 15 (1915–17), 3845.Google Scholar
5Bers, L.. Isolated singularities of minimal surfaces. Ann. Math. 53 (1951), 364386.CrossRefGoogle Scholar
6Bierstone, E. and Milman, P. D.. Semianalytic and subanalytic sets. Publ. Math. l'IHÉS 67 (1988), 542.CrossRefGoogle Scholar
7Birbrair, L., Fernandes, A., , D. T. and Sampaio, J. E.. Lipschitz regular complex algebraic sets are smooth. Proc. Amer. Math. Soc. 144 (2016), 983987.CrossRefGoogle Scholar
8Bochnak, J., Coste, M. and Roy, M. F.. Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 36 (Berlin, Heidelberg: Springer, 1998).Google Scholar
9Bombieri, E., De Giorgi, E. and Giusti, E.. Minimal cones and the Bernstein problem. Invent. Math. 7 (1969), 243268.CrossRefGoogle Scholar
10Caffarelli, L., Hardt, R. and Simon, L.. Minimal surfaces with isolated singularities. Manuscripta Math. 48 (1984), 118.CrossRefGoogle Scholar
11Chirka, E. M.. Complex analytic sets (Dordrecht: Kluwer Academic Publishers, 1989).CrossRefGoogle Scholar
12Coste, M.. An introduction to o-minimal geometry (Pisa: Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, 2000). Available in http://perso.univ-rennes1.fr/michel.coste/articles.html.Google Scholar
13Dierkes, U., Hildebrandt, S., Küster, A. and Wohlrab, O.. Minimal surfaces I. Boundary value problems (Berlin etc.: Springer-Verlag, 1992).CrossRefGoogle Scholar
14van den Dries, L.. Remarks on Tarski's problem concerning (R, + , *, exp). Stud. Logic Found. Math. 112 (1984), 97121.CrossRefGoogle Scholar
15van den Dries, L.. A generalization of the Tarski-Seidenberg theorem, and some nondefinability results. Bull. Amer. Math. Soc. 15 (1986), 189193.CrossRefGoogle Scholar
16van den Dries, L. and Miller, C.. Geometric categories and o-minimal structures. Duke Math. J. 84 (1996), 267540.CrossRefGoogle Scholar
17Finn, R.. Isolated singularities of solutions of non-linear partial differential equations. Trans. Amer. Math. Soc. 75 (1953), 385404.Google Scholar
18Finn, R.. Comparison principles in capillarity. Partial differential equations and calculus of variations. Lecture Notes in Math., 1357, pp. 156–197 (Berlin: Springer, 1988).CrossRefGoogle Scholar
19Gulliver, R. D.. Regularity of minimizing surfaces of prescribed mean curvature. Ann. Math. 2 Ser. 97 (1973), 275305.CrossRefGoogle Scholar
20Gulliver, R.. Removability of singular points on surfaces of bounded mean curvature. J. Differ. Geom. 11 (1976), 345350.CrossRefGoogle Scholar
21Gulliver II, R. D. G., Osserman, R. and Royden, H. L.. A theory of branched immersions of surfaces. Am. J. Math. 95 (1973), 750812.Google Scholar
22Harvey, R. and Lawson, B.. Extending minimal varieties. Invent. math. 28 (1975), 209226.CrossRefGoogle Scholar
23Hopf, H.. Über Flächen mit einer relation zwischen Hauptkrümungen. Math. Nachr. 4 (1951), 232249.CrossRefGoogle Scholar
24Lawson, H. B. and Osserman, R.. Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math. 139 (1977), 117.CrossRefGoogle Scholar
25Morrey, C. B.. Second order elliptic systems of differential equations. Contributions to the theory of partial differential equation. Annals of Math. Studies no. 33, pp. 101–160 (Princeton: Princeton University Press, 1954).CrossRefGoogle Scholar
26Morrey, C. B.. Multiple integrals in the calculus of variations (New York: Springer Verlag, 1966).CrossRefGoogle Scholar
27Mumford, M.. The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. 9 (1961), 522.CrossRefGoogle Scholar
28Osserman, R. and Gilbarg, D.. On Bers' theorem on isolated singularities. Indiana University Mathematics Journal 23 (1973), 337342.CrossRefGoogle Scholar
29O'Shea, D. and Wilson, L. C.. Limits of tangent spaces to real surfaces. Am. J. Math. 126 (2004), 951980.CrossRefGoogle Scholar
30Perdomo, O. M.. Algebraic constant mean curvature surfaces in Euclidean space. Houston J. Math. 39 (2013), 127136.Google Scholar
31Perdomo, O. M. and Tkachev, V. G.. Algebraic CMC hypersurfaces of order 3 in Euclidean spaces. J. Geom. 110 (2019), 17. https://doi.org/10.1007/s00022-018-0461-z.CrossRefGoogle Scholar
32Sampaio, J. E.. Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones. Selecta Math. (N. S.) 22 (2016), 553559.CrossRefGoogle Scholar
33Sampaio, J. E.. Multiplicity, regularity and blow-spherical equivalence of complex analytic sets. 2017. arXiv:1702.06213v2 [math.AG].Google Scholar
34Serrin, J.. Removable singularities of solutions of elliptic equations. II. Arch. Ration. Mech. Anal. 20 (1965), 163169.CrossRefGoogle Scholar
35Simon, L.. On isolated singularities of minimal surfaces. Miniconference on partial differential equations, pp. 70–100 (Canberra AUS: Centre for Mathematical Analysis, The Australian National University, 1982).Google Scholar
36Weisstein, E. W.. Enneper's minimal surface. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/EnnepersMinimalSurface.html. Accessed on May 4th, 2018.Google Scholar
37Zariski, O.. On the topology of algebroid singularities. Amer. J. Math. 54 (1932), 453465.CrossRefGoogle Scholar
38Zhou, X. and Zhu, J. J.. Min-max theory for constant mean curvature hypersurfaces. Invent. math. 218 (2019), 441490.CrossRefGoogle Scholar