Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T13:45:18.201Z Has data issue: false hasContentIssue false

The ground states of quasilinear Hénon equation with double weighted critical exponents

Published online by Cambridge University Press:  03 June 2022

Cong Wang
Affiliation:
Department of Mathematics, Sichuan University, Chengdu 100144, People's Republic of China (wc252015@163.com)
Jiabao Su
Affiliation:
School of Mathematical Sciences, Capital Normal University, Beijing 100048, People's Republic of China (sujb@cnu.edu.cn)

Abstract

We prove the existence of nontrivial ground state solutions of the critical quasilinear Hénon equation $\displaystyle -\Delta _p u=|x|^{\alpha _1}|u|^{p^{*}(\alpha _1)-2}u-|x|^{\alpha _2}|u|^{p^{*}(\alpha _2)-2}u\ \ {\rm in}\ \mathbb {R}^{N}.$ It is a new problem in the sense that the signs of the coefficients of critical terms are opposite.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349381.CrossRefGoogle Scholar
Aubin, T.. Problèmes isopérimétriques et espaces de Sobolev (in French). J. Differ. Geom. 11 (1976), 573598.Google Scholar
Boccardo, L. and Murat, F.. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19 (1992), 581597.CrossRefGoogle Scholar
Brézis, H. and Lieb, E.. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88 (1983), 486490.CrossRefGoogle Scholar
Caffarelli, L., Kohn, R. and Nirenberg, L.. First order interpolation inequalities with weights. Compositio Math. 53 (1984), 259275.Google Scholar
Catrina, F. and Wang, Z.-Q.. On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54 (2001), 229258.3.0.CO;2-I>CrossRefGoogle Scholar
Catrina, F. and Wang, Z.-Q., A one-dimensional nonlinear degenerate elliptic equation. Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), 89–99, Electron. J. Differ. Equ. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001.Google Scholar
Chou, K. S. and Chu, C. W.. On the best constant for a weighted Sobolev–Hardy inequality. J. London Math. Soc. 48 (1993), 137151.CrossRefGoogle Scholar
Filippucci, R., Pucci, P. and Robert, F.. On a $p$-Laplace equation with multiple critical nonlinearities. J. Math. Pure Appl. 91 (2009), 156177.CrossRefGoogle Scholar
Ghoussoub, N. and Yuan, C.. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352 (2000), 57035743.CrossRefGoogle Scholar
Gidas, B. and Spruck, J.. Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 24 (1981), 525598.CrossRefGoogle Scholar
Gladiali, F., Grossi, M. and Neves, S. L. N.. Nonradial solutions for the Hénon equation in $\mathbb {R}^{N}$. Adv. Math. 249 (2013), 136.CrossRefGoogle Scholar
Hsia, C.-H., Lin, C.-S. and Wadade, H.. Revisiting an idea of Brézis and Nirenberg. J. Funct. Anal. 259 (2010), 18161849.CrossRefGoogle Scholar
Hénon, M.. Numerical experiments on the stability of spherical stellar systems. Astronom. Astrophys. 24 (1973), 229238.Google Scholar
Horiuchi, T.. Best constant in weighted Sobolev inequality with weights being powers of distance from the origin. J. Inequal. Appl. 1 (1997), 275292.Google Scholar
Lieb, E.. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118 (1983), 349374.CrossRefGoogle Scholar
-L. Lions, P.. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1 (1985), 145201.CrossRefGoogle Scholar
-L. Lions, P.. The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1 (1985), 45121.CrossRefGoogle Scholar
Li, Y. Y. and Lin, C.-S.. A nonlinear elliptic PDE and two Sobolev–Hardy critical exponents. Arch. Ration. Mech. Anal. 203 (2012), 943968.CrossRefGoogle Scholar
Su, J., Wang, Z.-Q. and Willem, M.. Nonlinear Schröodinger equations with unbounded and decaying radial potentials. Commun. Contemp. Math. 9 (2007), 571583.CrossRefGoogle Scholar
Su, J., Wang, Z.-Q. and Willem, M.. Weighted Sobolev embedding with unbounded and decaying radial potential. J. Differ. Equ. 238 (2007), 201219.CrossRefGoogle Scholar
Talenti, G.. Best constant in Sobolev inequality. Ann. Math. Pura Appl. 110 (1976), 353372.CrossRefGoogle Scholar
Wang, C. and Su, J.. Critical exponents of weighted Sobolev embeddings for radial functions. Appl. Math. Lett. 107 (2020), 106484.CrossRefGoogle Scholar
Wang, C. and Su, J., The ground states of Hénon equations for $p$-Laplacian in $\mathbb {R}^{N}$ involving upper weighted critical exponents. Preprint, 2020.Google Scholar
Wang, C. and Su, J.. The semilinear elliptic equations with double weighted critical exponents. J. Math. Phys. 63 (2022), 041505.CrossRefGoogle Scholar
Willem, M.. Minimax Theorems (Birkhuser Boston Inc., Boston, 1996).CrossRefGoogle Scholar