Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T03:27:23.597Z Has data issue: false hasContentIssue false

Inverse problems for multiple invariant curves

Published online by Cambridge University Press:  03 December 2007

Colin Christopher
Affiliation:
Department of Mathematics and Statistics, University of Plymouth, Plymouth PL2 3AJ, UK (c.christopher@plymouth.ac.uk)
Jaume Llibre
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain (jllibre@mat.uab.cat)
Chara Pantazi
Affiliation:
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, ETSEIB, Av. Diagonal 647, 08028 Barcelona, Spain (chara.pantazi@upc.edu)
Sebastian Walcher
Affiliation:
Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany (walcher@matha.rwth.aachen.de)

Abstract

Planar polynomial vector fields which admit invariant algebraic curves, Darboux integrating factors or Darboux first integrals are of special interest. We solve the inverse problem for invariant algebraic curves with a given multiplicity and for integrating factors, under generic assumptions regarding the (multiple) invariant algebraic curves involved. In particular, we prove, in this generic scenario, that the existence of a Darboux integrating factor implies Darboux integrability. Furthermore, we construct examples in which the genericity assumption does not hold and indicate that the situation is different for these.

Type
Research Article
Copyright
2007 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)