No CrossRef data available.
Published online by Cambridge University Press: 14 February 2012
The traditional method of solution to problems in linear viscoelasticity theory involves the direct application of the Laplace transform to the relevant field equations and boundary conditions. If the shape of the body under consideration or the type of boundary condition specified at a point or both vary with time then this method no longer works. In this paper we investigate the applicability of stress function solutions to this situation. It is shown that for time-dependent ablating regions a generalization of the Papkovich Neuber stress function solution of elasticity holds. As an example the stress and displacement fields are calculated for the problem of an infinite viscoelastic body with a spherical ablating stress free cavity and prescribed time-dependent stresses at infinity.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.