Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T07:25:41.077Z Has data issue: false hasContentIssue false

Landau's inequality

Published online by Cambridge University Press:  14 November 2011

M. K. Kwong
Affiliation:
Department of Mathematical Sciences, Northern Illinois University, De Kalb, Illinois 60115, U.S.A.
A. Zettl
Affiliation:
Department of Mathematical Sciences, Northern Illinois University, De Kalb, Illinois 60115, U.S.A.

Synopsis

Landau's inequality ∥y′∥2≦4∥y∥∥y″∥ is extended to ∥y′∥2K(a)∥y∥1−a ∥y″ ∣y∣a∥, K(a) = 4/(l−a), 0≦ a<1. The proof is elementary and new even in the case a = 0 considered by Landau.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hadamard, J.. Sur le module maximum d'une fonction et de ses derivées. C. R. Soc. Math. France (1914), 6672.Google Scholar
2Hardy, G. H., Littlewood, J. E. and Polya, G.. Inequalities (Cambridge Univ. Press, 1934).Google Scholar
3Kwong, M. K. and Zettl, A.. Ramifications of Landau's inequality. Proc. Roy. Soc. Edinburgh Sect. A 86 (1981), 175212.CrossRefGoogle Scholar
4Landau, E.. Einige Ungleichungen für zweimal diflerenzierbare Funktionen. Proc. London Math. Soc. 13 (1913), 4349.Google Scholar