No CrossRef data available.
Article contents
Lipschitz conditions satisfied by Hankel transforms
Published online by Cambridge University Press: 14 November 2011
Abstract
It is shown that Hankel transforms of functions on certain weighted LP spaces satisfy Lipschitz and integral Lipschitz conditions. In particular, Fourier-cosine and Fourier-sine transforms satisfy such Lipschitz conditions on such spaces.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 125 , Issue 4 , 1995 , pp. 847 - 858
- Copyright
- Copyright © Royal Society of Edinburgh 1995
References
1Hardy, G. H. and Littlewood, J. E.. Some properties of fractional integrals I. Math. Z. 27 (1928), 565–606.CrossRefGoogle Scholar
2Hardy, G. H., Littlewood, J. E. and Polya, G.. Inequalities (Cambridge; Cambridge University Press, 1967).Google Scholar
3Rooney, P. G.. On the ranges of certain fractional integrals. Canad. J. Math. 24 (1972), 1198–216.CrossRefGoogle Scholar
4Rooney, P. G.. A technique for studying the boundedness and extendability of certain types of operators. Canad. J. Math. 25 (1973), 1090–102.CrossRefGoogle Scholar
5Rooney, P. G.. On the range of the Hankel transformation. Bull. London Math. Soc. 11 (1979), 45–8.CrossRefGoogle Scholar
6Rooney, P. G.. On the Yv and Hv transformations. Canad. J. Math. 32 (1980), 1021–44.CrossRefGoogle Scholar