Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T08:02:42.884Z Has data issue: false hasContentIssue false

A lower closure theorem for autonomous orientor fields

Published online by Cambridge University Press:  14 November 2011

Luigi Ambrosio
Affiliation:
Scuola Normale Superiore, Piazza Cavalieri 7, 56100 Pisa, Italy

Synopsis

Given a set valued mapping ∑: ℝ → ∑n, we prove a closure property with respect to -convergence for the differential inclusion

under very mild assumptions on ∑.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosio, L.. Nuovi risultati sulla semieontinuita inferiore di certi funzionali integrali. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 79 (1987), 8289.Google Scholar
2Ambrosio, L.. New lower semicontinuity theorems for integral functionals. Rend. Accad. Naz. Sci. XL. Mem. Sci. Fis. Natur. (to appear).Google Scholar
3Castaing, C. and Valadier, M.. Convex Analysis and measurable multifunctions. Lecture Notes in Mathematics 580 (Berlin: Springer, 1977).Google Scholar
4Cesari, L.. Optimization—Theory and Applications (New York: Springer, 1983).CrossRefGoogle Scholar
5Cesari, L.. Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints I, II. Trans. Amer. Math. Soc. 124 (1966), 369412, 413–429.CrossRefGoogle Scholar
6Clarke, F. H.. Optimization and Nonsmooth Analysis (New York: Wiley, 1983).Google Scholar
7Giorgi, E. de, Buttazzo, G. and Maso, G. Dal. On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 74 (1983), 274282.Google Scholar
8Serrin, J. and Varberg, D. E.. A general chain rule for derivatives and the change of variables formula for the Lebesgue integral. Amer. Math. Monthly 76 (1969)514520.CrossRefGoogle Scholar