Published online by Cambridge University Press: 14 November 2011
In this paper, the formally J-symmetric Sturm-Liouville operator with complex-valued coefficients is considered and a generalisation of the Weyl limit-point, limit-circle dichotomy is sought by means of m (λ )-functions. These functions are then used to give an explicit description of all the associated J-selfadjoint operators with separated boundary conditions in the limit-circle case. A formulation of the eigenvalues of these operators, and a characterisation of which extensions are non-well-posed, are also found. Finally, the limit-point case is studied, mainly by means of an example.